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A B S T R A C T
While vast literature on high-dimensional data visualization is available, there are not many
works regarding the visualization of feature scorers and their results. Feature scorers are
algorithms that assign numerical importance to each feature of multi-dimensional datasets. These
importance scores can be used in several applications, such as feature selection, knowledge
discovery, and machine learning interpretability. There are several feature scorers to choose from,
and often no single metric or ground truth is available to guarantee the quality of their results.
In this scenario, visualization can become valuable to support the decision of which method
to choose and how good its results are. For this goal, this work presents “weighted t-SNE.” It
modifies the relationship between data points in the embedded 2D space to reflect the importance
of each dimension of the original datasets as assessed by a feature scorer. This research discusses
how to implement weighted t-SNE, proposes the silhouette coefficient as a numerical evaluation
of the results, and shows several examples of its use in practice. Synthetic and real-world
tabular datasets are used in the experiments together with nine feature scorers, ranging from
Mutual Information to neural networks. Each feature scorer produces unique visualizations, and
weighted t-SNE can be used to compare and choose the one that better suits a given dataset
and task. Weighted t-SNE can also visually show the importance of features learned by machine
learning models and help us see how they are organizing the data, increasing their interpretability.

roduction
-dimensional data refers to datasets whose dimensionality is comparable to or even higher than their sample

s often present in tables containing information regarding the sciences or business [1]. Some examples are data
expression from cancer patients [2, 3], SNPs in forensic science [4], COVID-19 patients’ hemogram exams

, astrophysics [8], and sales from e-commerce [9]. One of the key aspects of those large tabular datasets is the
e of dozens to millions of columns, each representing a feature, input, or dimension of the data being studied

analyses such as clustering, classification, regression, or outlier detection rely first on the transformation,
n, and removal of features [1]. Each feature represents one attribute of a data sample or instance. Dimensionality
n and feature selection allow large datasets to become manageable by keeping only the relevant information,
the data more easily understandable, and freeing storage space. Feature scorers are a large and diverse group
ithms that play a crucial role in this process. They use distinct strategies, metrics, and criteria to determine
ortance score of each feature. Once obtained, these scores are numerical values that can be used to filter the
ven for knowledge discovery. Because several machine learning models can output feature importance as well,
ores can even help with machine learning interpretability [10, 11, 12]. It is important to note that the feature
nce is always concerning a specific task and data, and it should not be assumed that this value will be the same
ntext for the feature changes.
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(b) Feature importance as learned by a neural network
: Comparison between the visualization using weighted t-SNE of a synthetic regression dataset before and after
ing the feature importance as learned by a neural network. Each figure is the visualization of the 2D embedding
ression dataset (negative target values in blue, positive values in red) composed mostly of irrelevant features.On
is the regular visualization, in which the samples are mixed. On the right, it is possible to visualize how the
mportance learned by a neural network disentangles the samples. This experiment is further detailed in Section 4.
ve versions of all the plots in this publication are available at https://sbcblab.github.io/wtsne/.

e there are several feature scorers and no single metric guarantees the quality of the results, visualization
s a valuable tool to help in the method selection and show how good the results are. An inadequate set of scores

the subsequent steps of data analysis. Moreover, the visualization of a low-dimensional embedding of the
ensional data using methods like the t-Distributed Stochastic Neighbor Embedding (t-SNE) [13] is already

lished aspect of exploratory data analysis [1]. Visual cluster analysis often employs these techniques to project
-dimensional data into 2D scatterplots, assuming that the projection faithfully matches the actual clusters [14].
is scenario, visualizing the clusters affected by the feature importance scores in a 2D scatterplot would be a
tool for comparing feature scorers. The algorithms with better results (a more significant and representative set

s) would lead to better clusters in the projection. However, due to the challenges of visualizing high-dimensional
data and the algorithms being overlooked as a pre-processing step, they are usually applied as a black-box at
nning of an analysis [15]. In the vast literature on high-dimensional data visualization, few works are interested
ying the effects of feature scoring [10]. Most of the research interest is in the evaluation of feature selection
18] or the use of visualization to allow the user to interact with the selection process [19, 20, 21].
ackle this problem, we propose an extension of t-SNE to visualize the results from feature scoring algorithms:
d t-SNE. It modifies the relationship between data points to reflect the importance of each dimension. The
outcome is that relevant features have more influence on the position of the points in the final projection.
d t-SNE can be used as an inspection tool to compare and choose feature scorers in different datasets.

nally, combined with machine learning, it could better represent the patterns learned by the models. Fig. 1
n example of this application. In Fig. 1a, a regular projection is made with t-SNE of a synthetic dataset. After
a neural network to perform regression on this dataset, the importance score of each feature was extracted

e model and used to create the projection shown in Fig. 1b. It is possible to see how the feature importance
by the neural network sorted the samples by comparing the two scatterplots. This work focuses on continuous
rical features, which can also be ordinal or categorical. The requirement for running t-SNE on the data is
ust be meaningful. For instance, a suitable distance measure for the high-dimensional space must exist. This
ent is often not reached if the feature types are mixed.

reliminary version of weighted t-SNE appeared in the research by Grisci et al. [10]. It focused in relevance
tion, a method for neural network interpretability. In that study, authors used weighted t-SNE to visualize the
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

learned by the networks trained on tabular data. Despite those results showing the potential of this kind of
ation, Grisci et al. [10] only used weighted t-SNE to validate the main method, relevance aggregation. Junior
es [22] and Zhao et al. [23] later used weighted t-SNE to visualize neural network results for absenteeism

on and to evaluate data transformation techniques on software defect prediction models, respectively. Lu and
] and Ma et al. [25] also explored the idea of scaling features for t-SNE visualizations, albeit for distinct
s. The present research presents a thorough description, critical analysis, and discussion of an updated weighted
ogether with a large set of experiments on several datasets and feature scorers.
remainder of this paper has the following organization. Section 2 presents and discusses feature scorers, related
ation methods, and the silhouette coefficient metric. Section 3 describes the proposed weighted t-SNE. Section 4
he experiments and results, as well as a discussion on machine learning interpretability. Finally, Section 5
es this work.
ent of significance
erstanding the effectiveness of feature scorers is a fundamental challenge in machine learning and data science.
rediction accuracy is commonly used to evaluate feature scoring and selection, it does not fully capture how
importance influences data representation. Visualization techniques such as t-SNE provide a powerful tool
oring high-dimensional data, yet they do not inherently account for feature relevance. This paper introduces
d t-SNE, a novel extension that integrates feature importance scores into the dimensionality reduction process,

direct inspection of how different scorers structure data.
blem: Selecting the best feature scorer is often difficult due to the lack of ground truth for feature importance.

evaluation methods typically rely on classification or regression performance, but these metrics do not reveal
ll a scorer identifies relevant features. Additionally, feature scoring is distinct from feature selection. While
selection reduces dimensionality by removing features, feature scoring assigns relative importance to all
, and this process has received less attention from visualization tools. Without proper inspection methods,
nt or misleading feature scores may negatively impact downstream tasks, such as model interpretability,
ation, or regression. For high-dimensional data, the manual inspection of thousands of numerical values is
le. Moreover, two models with identical predictive accuracy may assign different importance scores to features,
numerical comparison difficult, a challenge that weighted t-SNE helps resolve by providing an intuitive visual
tation.

at is already known: Traditional t-SNE or similar tools like UMAP are widely used for exploratory data
, often assuming that clusters in the visualization correspond to meaningful patterns in the data. However, it
t incorporate feature importance, making it unsuitable for evaluating feature scorers. Visualization techniques
re selection exist, such as RadViz, Self-Organizing Maps (SOM), and SmartStripes, but they focus on selecting
of features rather than analyzing the distribution of importance scores across all dimensions. Machine learning
tability tools such as SHAP and LIME provide insights into model decisions but do not offer direct visualization
re scorers across an entire dataset.
at this paper adds: Weighted t-SNE is a visualization tool specifically designed for analyzing feature scorers,

the gap between feature scoring and visual interpretability. It allows users to visually assess how different
methods affect data representation. It can be used in labeled datasets, providing insight into how feature
nce influences different types of machine learning models. Beyond classification accuracy, weighted t-SNE
tiple practical applications: It helps revealing outliers in high-dimensional datasets where irrelevant features
therwise obscure them. It visually tracks how a model transforms feature representations internally, making it

analyze learned feature importance compared to raw numerical scores. Weighted t-SNE is a valuable tool for
learning and data science pipelines. By allowing visualization of feature scorers, it helps users select the most
scorer for a given dataset, ultimately improving downstream tasks such as feature selection, classification,
ssion. By incorporating feature importance into dimensionality reduction, weighted t-SNE provides a new
tive on feature scoring, offering insights that neither accuracy-based evaluation nor traditional visualization

provide.

i et al.: Preprint submitted to Elsevier Page 3 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

ated work
ature scoring
ure scorers are algorithms or methods that, given a dataset, assign to each of its features (dimensions) a score
ng its importance or relevance based on specific criteria or metrics. For example, given a tabular dataset with
ses and 𝑛 features, a standard feature scorer would return 𝑛 scores corresponding to each dimension of the

in a way that those features with larger scores are better at distinguishing the two classes. These importance
an be used in several applications, such as dimensionality reduction, feature selection, knowledge discovery,
etection, and machine learning interpretability [26, 27].

ause there is a large overlap in methods and application, it is important to distinguish between feature scoring
ure selection as two related but distinct tasks:
eature scoring: This task focuses on assigning numerical importance scores to features based on their relevance
a specific task (e.g., classification, regression, statistical significance, domain relevance). The scores provide a
antitative measure of how useful or relevant each feature is, but they do not directly reduce the dimensionality
the dataset. Feature scoring allows the comparison of features and enables feature ranking and feature

lection.
eature selection: This task involves using the importance scores from feature scoring (or other selection
iteria) to select a subset of features for downstream tasks. Typically, a threshold is applied to the scores,
d features below the threshold are removed from the dataset. The goal of feature selection is to reduce
mensionality, improve computational efficiency, and enhance the interpretability of the data. Usually, after
ature selection the features are used as equally important.
example, if the features are ranked by their scores, a threshold can be set to remove all features below it from
set. After the reduction, the remaining features will ideally be more informative for training predictors, can be
sily analyzed by humans, or take less processing time and memory space for algorithms. Moreover, knowing
atures are more important and which are less according to given criteria can be exploited for analyzing and

ting the data [28, 10]. Further differences between feature scoring and feature selection are discussed in the
ents of Section 4.
ature on its own may seem irrelevant, but when combined with other features, it could become highly relevant
. Ideally, the features with high scores should be strongly relevant, but sometimes they can be weakly relevant
edundant features are helpful in improving the predictions. Meanwhile, the irrelevant, redundant, or noisy
receive lower scores [27]. Feature scorers are considered univariate if each feature is analyzed independently,
tivariate if the interactions and correlations between features are taken into account. These methods are usually
in the five groups presented below [27, 26] with examples that will be used in the experiments of Section 4.
these methods take into account the inherent characteristics of the data in conjunction with evaluation criteria
nformation, distance, consistency, dependency, etc.), and are not limited to being classifiers. Most filters treat
e problem as a ranking problem and are univariate. They do not rely on specific learning algorithms, providing
ore general solutions that different classifiers can use. Filters are faster and more computationally efficient
an the other groups of selectors, but they may ignore relationships between different features or the effects that
ey have when combined [26, 27]. An example is the Kruskal-Wallis one-way analysis of variance [30], a non-
rametric statistical test for discovering if samples originate from the same distribution. The Kruskal–Wallis
st can be used as a simple filter feature scorer. In this case, every feature is individually tested to check if it
longs to the same distribution for the different groups (or classes), and their scores come from the statistical

gnificance (the more certain of a feature belonging to different distributions for each group, the larger its
portance) [28, 10]. Another example is the Minimum Redundancy Maximum Relevance (mRMR) [31], a

lter algorithm that iteratively selects the features that maximize mutual information to the target class and
inimize the redundancy regarding all the features previously selected. Mutual Information is a measure of
w much information one random variable has in relation to another variable [32]. It is possible to quantify a
ature’s relevance based on how much information it holds with respect to the target class. As a final example,
eliefF scores each feature according to how different they are from nearby instances [33]. For all samples in a
taset, it looks for the k-neighbor samples of each class and then weights how much each feature differs between
mples, thus being an efficient algorithm that considers feature-correlation [34].
i et al.: Preprint submitted to Elsevier Page 4 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

r: the scoring is made using some optimization algorithm, often a metaheuristic, and then wrapping a
assifier (or regressor) around the selected features [27]. The accuracy is the criteria of evaluation. The set of
ost discriminating features is found by minimizing the classification error, which often results in better accuracy
an filters. However, wrappers are highly dependent on the learning algorithm being used as a classifier, so
e solutions do not generalize. There is no guarantee that the quality of performance of the selected features
ill be transferable for other classifiers. Wrappers are more likely to suffer from overfitting and to present huge
mputational costs since the training of the classifier needs to be performed for each new subset being evaluated
6, 27].

ded: the scoring process is integrated within the learning algorithm and is conducted simultaneously with
e classification (or regression). This approach is more efficient than wrappers because it avoids the repetition
training a classifier and is less prone to overfitting while achieving similar performance. Despite this, the
mputational complexity in high-dimensional data remains a challenge. [27]. Examples of a simple embedded
gorithm are the least absolute shrinkage and selection operator (Lasso) [35] and decision trees, but even
pport-vector machines (SVM) and neural networks can be treated as embedded scorers. In these cases,
me metric is used to evaluate the impact of each feature inside the model. This idea is further discussed
Subsection 4.1.
le: multiple classifiers or regressors are trained and their predictions are combined to achieve a better result.
popular example is the random forest [36], which is an ensemble of decision trees.

: a combination of different methods (which may or may not belong to the same group), different scorer
gorithms, or different criteria, in an attempt to capitalize on their unique strengths. The most common
mbination is that of wrappers and filters [27].
ke filters, wrapper and embedded methods rely on the accuracy of a classifier during evaluation, while also
strategies to search the feature space to complete the selection process [26]. Hybrid methods usually have
results, as they combine the strengths of the other approaches, decrease the computational costs narrowing

ch space, and reduce overfitting [27]. Feature scorers are usually global in that the features’ importance is
d over the entire data space [37]. If the importance must be computed locally (different subspaces of the data
erent feature scores), an alternative method is subspace clustering [37, 38]. More details on how particular
corers work, including mathematical formulation, are present in the Supplementary material.
ure scoring can be applied to several domains, some of them listed in Section 1. One of the most critical and
t applications of feature scorers is in gene selection. Due to its relevance, it will be described in more detail in
ion and used in some experiments in Section 4. Feature selection is applied to genomic data (a popular example
ne expression from microarray experiments) to discover subsets of genes capable of separating samples from

t populations [39, 2, 40, 41]. Genomic data can be effectively used for reliable cancer diagnosis, prognosis, or
treatment, but it often contains irrelevant, redundant, or noisy values [42, 27]. The discovery of genes capable
entiating samples from different target annotations (the samples’ classes) is an essential aspect in the analysis
array data [26]. These informative genes are used in the identification of diseases or as potential drugs targets
contrast to regular feature selection, the elimination of redundant features can lose informative genes with
orrelated expressions in gene selection.
t gene selection studies are focused on filters due to their efficiency and generability [27]. Nevertheless, many
es persist, such as the presence of technical defects in the experiments [27], class imbalance [43, 26], data bias
bility [45], and the difference between the several analyses standards. More importantly, retrieving domain-
information from the data is not an easy task, and determining the relevance or redundancy of a feature is

, leading to unexpected biases and mistakes in conclusions. Despite a large number of methods available, there
uch room for innovations and improvements [27, 41, 28, 45]. Gene selection is an open problem with many
es and new alternatives rising, with several methods for differentially expressed genes discovery being only
different among them [26, 46]. There is also the need for visualization to make sense of clusters of samples in
rge high-dimensional datasets [47, 48, 49, 10]. In this context, creating analytics tools for the comparison and
on of feature scorers is fundamental.

i et al.: Preprint submitted to Elsevier Page 5 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

sualization methods
ral algorithms are used to visualize multi-dimensional data in the 2D or 3D spaces. One of the most common

hes is to compute the Principal Component Analysis (PCA) of the data and display the first components [50].
A extracts the principal components of the data through the covariance between dimensions so that each
ent is a linear transformation of the original dimensions that maximizes the variance information. Unlike
PCA is deterministic and tends to preserve the distance of the points in the lower dimensions, keeping the
tructure of the data but losing its local structure. PCA also cannot faithfully represent non-linearity in the data,
ould defeat the purpose of using it to visualize feature selectors that are non-linear. As discussed by Kobak

ens [47], PCA can be used to initialize the positions of the points for the t-SNE.
ore recent option to t-SNE is the Uniform Manifold Approximation and Projection (UMAP) [51]. Previous
ents conducted by Xia et al. [14] showed that UMAP and t-SNE are the best dimensionality reduction methods
er identification and membership identification. UMAP uses a sampling-based approach to optimize repulsive
etween data points [47]. While UMAP is said to be faster than regular t-SNE, it was observed that it is slower
imized implementations of t-SNE and does not present better results for transcriptomics data [47].
stinct approach for non-linear multi-dimensional 2D visualization is RadViz [52]. This algorithm places each
as equally spaced positions around the perimeter of a circle to serve as “anchor points.” The data samples
esented as points inside the circle, their positions determined by the values of their features. Each data point
cted to the anchor points as if by a spring whose stiffness is proportional to the value of the corresponding
scaled between zero and one). The final data point is in the equilibrium position for all its springs, and points
a variable anchor have a higher value than for the other variables. RadViz has been used to visualize gene
on data [49] and has also been expanded into attribute-RadViz [20] as a tool for user-guided feature selection.
advantage of RadViz is that its complexity grows and clarity decreases as the number of dimensions to be
ted increases, which is an impediment in the use-cases with thousands of features present in Section 4.
r methods of user-guided feature selection are the FDive [19], which uses Self-Organizing Maps (SOM) [53]

mine feature relevance, and the SmartStripes [15], which uses a color data table to convey information about
res. Once again, although the topics are closely related, the focus of the present work is the visualization of
coring, not feature selection. Another approach that resembles the results of SmartStripes but was developed
the importance scores of features is the table heatmap [10]. In this approach, the original dataset is displayed,

h cell is colored with hue value-intensity proportional to the feature importance. However, table heatmap is
le for large datasets.
istributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding (t-SNE) [13] is one of the most popular algorithms for

ing high-dimensional datasets. It is a non-linear dimensionality reduction technique that allows the embedding
dimensions in a much smaller space, usually 2D, to be used in plots. The core idea of t-SNE is to use methods
chine learning to optimize the embedding in a way that preserves the local neighborhood of points. Because
the local structure of points clustered together is usually kept in the embedding space. However, the global
e of the dataset can be lost. It is important to note that in t-SNE the low-dimensional embedding space does not
rily represent any meaningful dimension of the original space, which is different from other methods, some of
ke PCA, described in Subsection 2.2.
algorithm is now presented in more detail, based on the definitions of Maaten and Hinton [13] and Kobak and
47]. Several practical improvements were proposed in the past years that made t-SNE more efficient regarding
consumption and computing time [47, 54, 55, 56, 57]. Considering that we desire to visualize a𝑁-dimensional
𝐗 ∈ ℝ𝑁 , t-SNE will create a lower dimensional embedding 𝐘 ∈ ℝ𝑛, in which 𝑛 ≪ 𝑁 . The desired result is
points 𝜒𝑖, 𝜒𝑗 ∈ 𝐗 that are close to each other should be represented by lower-dimensional points 𝛾𝑖, 𝛾𝑗 ∈ 𝐘

also close to each other. The similarities between the original and the embedding space points can be modeled
bility densities. Similarities in 𝐗 can be computed by a Gaussian distribution as shown in Equation 1. These
itional probabilities that can be symmetrized to obtain joint probabilities 𝑝𝑖𝑗 as in Equation 2.

|𝑖 =
exp(−‖𝜒𝑖 − 𝜒𝑗‖2∕2𝜎2𝑖 )∑
𝑘≠𝑖 exp(−‖𝜒𝑖 − 𝜒𝑘‖2∕2𝜎2𝑖 )

(1)

i et al.: Preprint submitted to Elsevier Page 6 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2
(2)

similarities in the embedding space 𝐘 are computed similarly. However, instead of the Gaussian distribution,
ent’s t-distribution is used, as shown in Equation 3. This change allows some distances to be less faithfully
d in the embedding thanks to the fatter tails of the t-distribution. This is needed because there is less available
the embedding (because there are fewer dimensions), so without this freedom from the fatter tails, the points

nd up crowded together.

𝑗 =
(1 + ‖𝛾𝑖 − 𝛾𝑗‖2)−1∑
𝑘≠𝑙(1 + ‖𝛾𝑘 − 𝛾𝑙‖2)−1

(3)

that the distributions 𝐏 and 𝐐 are defined from 𝑝𝑖𝑗 and 𝑞𝑖𝑗 , the goal of t-SNE is to make 𝐏 and 𝐐 as similar
other as possible. The Kullback–Leibler (KL) divergence is an alternative to measure the similarity between
bability distributions, shown in Equation 4. The divergence can be seen as a cost 𝐾𝐿(𝑃‖𝑄) to be minimized.

it is differentiable, it can be optimized with gradient descent.

𝐿(𝑃‖𝑄) = ∑
𝑖𝑗
𝑝𝑖𝑗 log

𝑝𝑖𝑗
𝑞𝑖𝑗

(4)

Gaussian kernels centered over each data point in 𝐗 have a bandwidth 𝜎𝑖 (Equation 1). As the data density
ach data point has its optimal value for 𝜎𝑖. For instance, a larger value of 𝜎𝑖 will be adequate in sparser regions.
alues are defined as the perplexity value, and the Gaussian kernels fit the nearest neighbors within one standard
n of the probability density. The perplexity is a tunable parameter, as the user should determine how many
ighbors each point has. When it was first proposed, it was stated that the performance of t-SNE is robust to
in the perplexity between the typical values of 5 and 50 [13]. However, the choice of perplexity and number of
s during optimization can significantly impact the result of t-SNE [58]. Another point raised is that there is no
e that distances between well-separated clusters are meaningful without fine-tuning the perplexity. A rule-of-

hat resulted in good empirical results is to set the perplexity to𝑚𝑎𝑥(30, 𝑚∕100),𝑚 being the number of samples
ataset [47]. This work employs this strategy to avoid choosing an arbitrary perplexity. One issue of SNE-like

is that information on scales beyond the chosen perplexity tends to be excluded. One possible solution is
neralized similarities, computed as averages of softmin ratios with varying bandwidths, encompassing all
rhood sizes. The inclusion of different scales causes a slight increase in computational complexity, but these
ulti-scale similarities do not require additional parameters [59].
e works have already used the t-SNE as a feature extractor for several applications [16, 17, 18]. In those
ions, the features of the low-dimensional embeddings obtained from t-SNE are used instead of the original
from the high-dimensional data [16]. The t-SNE, among other methods, can also be straightforwardly used

lize feature selection results. This requires the creation of two plots, one with the complete set of features and
with only the subset of selected features [60]. These are not the goals of the present work, which uses t-SNE
lize the impact of feature importance scores and not to create the scores themselves or to only show a subset
res with no regard to their importance. The difference will be further discussed in Section 4.
lhouette coefficient
silhouette coefficient is a metric used to indicate the separation between clusters of points [61]. The silhouette
s how close each point in a cluster is to the points in the nearest clusters. Its range is [−1.0, 1.0]. A value close
cates that the point is far from other clusters and is well matched to its assigned cluster, a value of 0 suggests the
near the decision boundary between clusters, and a value close to −1 indicates that the point is closer to some
ster than the one it is assigned and may have been wrongly assigned to its cluster. The silhouette coefficient is

age silhouette over all samples.
silhouette coefficient in a visualization of a dataset can be used as an approximation on how well distinct classes
rated in the final plot [20]. In this case, the silhouette coefficient is computed using the actual class labels of
i et al.: Preprint submitted to Elsevier Page 7 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

a point. For instance, if the points in the low-dimensional embedding space have a silhouette coefficient close
r less, this embedding failed to divide the classes. Of course, for this analysis to make sense, it always needs to

r the silhouette coefficient of the original high-dimensional space, as the embedding is not expected to segregate
that do not have clear boundaries in the original space.
sidering that there are two or more clusters and that 𝜙 ∈ 𝐶𝑖 is a data point assigned to the cluster 𝐶𝑖, 𝑎(𝜙) is,
ed in Equation 5, the mean distance between 𝜙 and every other data point in 𝐶𝑖. |𝐶𝑖| is the number of points in
(𝜙, 𝜓) is the distance 𝑑(⋅) between the points 𝜙, 𝜓 ∈ 𝐶𝑖. The value 𝑎(𝜙) measures how well 𝜙 belongs to 𝐶𝑖ller the value the better).

𝜙) = 1
|𝐶𝑖| − 1

∑
𝜓∈𝐶𝑖,𝜙≠𝜓

𝑑(𝜙, 𝜓) (5)

logously, the value 𝑏(𝜙), defined in Equation 6, is the smallest mean distance between the point 𝜙 and all points
ter 𝐶𝑗 ≠ 𝐶𝑖. The value of 𝑏(𝜙) measures the dissimilarity of 𝜙 to all points from other clusters.

𝜙) = min
𝑗≠𝑖

1
|𝐶𝑗|

∑
𝜒∈𝐶𝑗

𝑑(𝜙, 𝜒) (6)

silhouette of the point 𝜙 ∈ 𝐶𝑖, called 𝑠(𝜙), is computed combining the values 𝑎(𝜙) and 𝑏(𝜙) as in Equation 7.
) will be close to 1 when 𝑎(𝜙) ≪ 𝑏(𝜙), meaning that 𝜙 has a low dissimilarity to its own cluster (small 𝑎(𝜙))
gh dissimilarity to the other clusters (large 𝑏(𝜙)).

𝜙) =

{ 𝑏(𝜙)−𝑎(𝜙)
max{𝑎(𝜙),𝑏(𝜙)} if |𝐶𝑖| > 1
0 if |𝐶𝑖| = 1

(7)

lly, the silhouette coefficient𝑆𝐶 is defined as the mean 𝑠(𝜙) over the entire dataset. This is shown in Equation 8,
𝐶 is the set of all clusters combined.

𝐶 = 1
|𝐶|

∑
𝜙∈𝐶

𝑠(𝜙) (8)

ustworthiness
trustworthiness 𝑇 is used to measure how much the local patterns in a projection (for instance, the embedded
e from t-SNE) mirror the actual patterns in the high dimensional data [62]. It is the proportion of points that
e in both the high dimensional and embedded space, computed according to Equation 9 [62, 63].

(𝑘) = 1 − 2
𝑚𝑘(2𝑚 − 3𝑘 − 1)

𝑚∑
𝑖=1

∑
𝑗∈ 𝑘

𝑖

max(0, (𝑟(𝑖, 𝑗) − 𝑘)) (9)

hich for every sample 𝜙𝑖,  𝑘
𝑖 are its 𝑘 nearest neighbors in the embedded space, and every sample 𝜙𝑗 is

)-th nearest neighbor in the high dimensional space. Nearest neighbors in the embedded space that are not
rs in the high dimensional space are penalized proportionally to their rank in the high dimensional space [63].
ge of values for 𝑇 (𝑘) is in [0, 1], with 1 being the best. Following the work of Espadoto et al. [62] and Martins
4], the parameter 𝑘 is set to be 𝑘 = 7. The trustworthiness is used to assess the quality of the 2D projections
d by the visualization methods.

i et al.: Preprint submitted to Elsevier Page 8 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

ighted t-SNE
proposed weighted t-SNE visualization is a method for inspecting the results from feature scoring algorithms.
practical standpoint, we identified some desired properties that weighted t-SNE should have to be helpful for
ysis and comparison of feature scorers. It should: (i) account for non-linearity in the data; (ii) be model-agnostic
r any scorer); (iii) use the importance score of each feature to produce a corresponding embedding; and (iv)

r all features in the original dataset if they all have an importance score larger than zero. Regarding the first item,
tasets contain complex structures in high-dimensional space, and the visualization must be able to reveal it in

ection space [1]. Moreover, non-linear and local methods like t-SNE are preferred in cluster and membership
ation [14]. Considering all features with non-zero scores is important to distinguish between different scorers’
r. For instance, to distinguish a scorer that concentrates all importance on a few features from a scorer that
the relevance among more features, even those that, in practice, are irrelevant. Moreover, this avoids the issue
g to define a hard threshold on what is a large enough score for a feature to be considered relevant.
ghted t-SNE does not change the t-SNE algorithm itself but changes the relationship between data points (their
) to reflect the importance of each dimension (feature). It leverages that feature scorers offer some feature
e value, indicating the feature’s contribution to classes or clusters identification. These values are the weights
e weighted t-SNE its name. All weights are scaled so that the maximum importance value is one and the
m value (for an irrelevant feature) is zero.
projection regarding the importance of the features is accomplished by incorporating the weights in the distance
ion. The weighted Euclidean distance 𝑑𝑤(⋅) [65, 66] (Equation 10) is used in Equation 1 from Subsection 2.3
ute the distance between two 𝑁-dimensional points 𝜙 and 𝜓 , using the 𝑁 weights in 𝜔.

𝑤(𝜙, 𝜓, 𝜔) =
𝑁∑
𝑖=1

√
(𝜔[𝑖](𝜓[𝑖] − 𝜙[𝑖]))2 (10)

sidering a 𝑁-dimensional dataset 𝐗 ∈ ℝ𝑁 with 𝑚 points, the difference of each dimension 𝑖 between the
and 𝜓 is multiplied by weight 𝜔[𝑖] (the importance score of that feature). As shown in Equation 11, this

alent to multiplying each point by 𝜔 or to perform the Hadamard product (element-wise product) between a
omposed of 𝑚 columns repeating the 𝑁 (the number of features) values of 𝜔 and 𝐗 to obtain a new scaled
𝐗′ ∈ ℝ𝑁 and use it to create the visualization.

[𝑖](𝜓[𝑖] − 𝜙[𝑖]) = (𝜓[𝑖] ⋅ 𝜔[𝑖]) − (𝜙[𝑖] ⋅ 𝜔[𝑖]) (11)
ause the weights range from zero (irrelevant) to one (relevant), scaling the dimensions by their weights allows
of higher importance to have a greater impact on the distance between points. The desired outcome is that
features influence the point position more in the final visualization.

ause the feature scaling can be performed before the embedding optimization, the additional computing cost
hted t-SNE is negligible. With the current improvements in the implementation of t-SNE, the code runs in a
f seconds or minutes. It should not significantly impact the total time of the data analysis pipeline.
worth noting that the method faces the same challenges as regular t-SNE regarding hyperparameter tuning [58].
d be possible to adopt this strategy to create variants of other visualization methods, for instance, a “weighted

Such variants would inherit the advantages and drawbacks of their original algorithms. This research focuses
E due to the advantages discussed in Subsection 2.2 and 2.3 and because narrowing on a single variant allows
re diverse set of experiments.
main goal of weighted t-SNE is to provide an inspection tool to compare and choose feature scorers in different
. Additionally, it can be one more item in the toolset of interpretable machine learning (Subsection 4.1).
d t-SNE was not designed for the individual visualization of specific features nor to score features themselves.
it provides a global visualization of the impact scorers have on the entire dataset and how it relates to data

. As such, the analysis of the results of a feature scorer using weighted t-SNE only makes sense in a comparative
meaning that the visualization of the dataset after the scoring needs to be contrasted to a visualization of the

before the scoring. The single 2D projection of weighted t-SNE for a feature scorer is meaningless if the 2D
on of the original data is not present, allowing the user to perceive or measure the difference between the two.
i et al.: Preprint submitted to Elsevier Page 9 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

ghted t-SNE focuses on feature scoring rather than feature selection, meaning it visualizes feature importance
ather than selecting a subset of features. While feature selection and scoring are related, they serve different
s. Feature selection typically receives more attention in visualization tools, whereas feature scoring lacks
inspection methods. Weighted t-SNE fills this gap but does not replace feature selection techniques.

ghted t-SNE can be used with other visualization tools, specifically those designed to visualize individual
’ importance, for a richer evaluation. An example of this application was demonstrated using a preliminary
of weighted t-SNE and the table heatmaps to analyze neural networks on multiple datasets in a previous study
e same research also explored using weighted t-SNE to visualize different scores for different clusters of the
taset. It highlighted the learning of distinct importance scores for each data class by neural networks.
ognizing that weighted t-SNE is an “indirect way” to evaluate feature scorers relying on a visual approximation
ata separation after scoring is essential. However, evaluating feature selection by classification or regression
(training a model on the top 𝑛 features) is also indirect. Even though feature scoring and feature selection are
arts of classification or regression pipelines (mainly during preprocessing), these are not the same tasks, nor

nly purpose of feature selection to improve classification accuracy. Thus, using an independent classifier to
the selection of features, while recommended as additional validation, is not a perfect measure.

luating feature selectors based on classification metrics would apply to feature selection algorithms (the top 𝑛
would be used to train a classifier) but not necessarily to feature scorers, for which all features receive a score.
h deeply connected, feature scoring and selection are different problems, as discussed in the next section.
ults from feature scorers can be converted into feature selection. However, in the process, it is necessary to
cutting threshold external to the algorithm and to discard features with scores under that threshold. The scores
ves are not considered in this context. Weighted t-SNE was designed with this issue in mind, thus visualizing
cores. Some of the experiments in the next section highlight these differences. Another point is that not all
corers are based on classification or regression models, such as the Kruskal-Wallis Filter or the mRMR. While
ovement in classification or regression metrics given a specific selection of features can indirectly measure
ction quality, it will not always be the case. Machine learning models are known to learn biases [67] and
s [68] from the data that lead to better metrics without necessarily discovering the rules or representations
by the user. In this scenario, a scorer that follows a different strategy (for instance, a statistical or information-
lgorithm) may find a better set of relevant features from a knowledge discovery standpoint but that does not
ze the prediction accuracy of a model. Because all these methods, including weighted t-SNE, approximate
surement of the scoring quality, it is recommended that they be used together to combine their strengths and
their drawbacks.

eriments and discussion
datasets were used for the experiments with weighted t-SNE and feature scorers. They are fully described
1. Two datasets are synthetic classification tasks, so the number of relevant and irrelevant features can be

ed. The first dataset used in the study was modeled after the exclusive-OR (XOR), using two out of a total of 𝑛
9, 10]. The XOR function in this problem is determined by two specific binary features in the input data, which
n to the user but not to the machine learning models. The other 𝑛 − 2 features, where 𝑛 = 50, are randomly

d binary values with no effect on the output. Samples are assigned either to class 0 or class 1 according to the
g values of their two relevant features: 0⊕0 = 0, 1⊕1 = 0, 0⊕1 = 1, and 1⊕0 = 1. The other 48 features are

one and do not impact the sample’s class. Despite its apparent simplicity, this problem is made more difficult
n-linearity and the presence of many irrelevant features.
ther synthetic dataset with with two classes and 100 samples created with scikit-learn [70, 71] 1 was also used.
aset has 5,000 input features, with only 50 being informative for class separation (unknown to the algorithms),
rest being irrelevant. Two other datasets are genes expression from cancer microarray experiments due to
portance, as discussed in Subsection 2.1. They are from liver and prostate cancer microarray experiments
from the CuMiDa database [2] 2 under the accession codes GSE22405 and GSE6919_U95B. These datasets

posed of two classes, one with samples from healthy tissue and the other from tumorous tissue. The choice
expression datasets followed the recommendations of Grisci et al. [44] regarding the data quality and up-to-
.

s://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
s://sbcb.inf.ufrgs.br/cumida

i et al.: Preprint submitted to Elsevier Page 10 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

ion of the datasets used in the weighted t-SNE experiments. Relevant is the number of features which are relevant
sk. All datasets are numerical and tabular.

Dataset Samples Features Relevant Classes Origin Reference
XOR 500 50 2 2 Synthetic [69, 10]
Synth 100 5000 50 2 Synthetic [70, 71]
Liver 48 22284 Unknown 2 Microarray [2]
Prostate 115 12647 Unknown 2 Microarray [2]
Regression 1000 100 4 - Synthetic [72, 71]
Mouse cortex 23822 45769 Unknown 23 RNA-seq [73, 47]

additional datasets are used to illustrate the points made in Subsection 4.1. The first is a synthetic regression
Fig. 1) with 100 features and 1,000 samples with continuous target values ranging between −12 and 12 created
kit-learn [72, 71] 3. It was only tested with the neural network because some of the other algorithms are not
suited for regression. The second is an RNA-seq dataset of 23, 822 cells from adult mouse cortex [73], divided
ierarchy of cell types (23 classes). This larger dataset was used for the machine learning experiments. Except
OR dataset, all the data was standardized. It is a best practice only to apply feature selection or scoring in

d datasets. All datasets used in our experiments have balanced classes to avoid issues. There is no general way to
the effects of class imbalance in all feature scorers because each algorithm has distinct strategies, advantages,
backs. However, the work of Kamalov et al. [74] further discusses the problem.

weighted t-SNE was implemented using Python 3, the openTSNE library4, and NumPy [75]. The perplexity was
d as described in Subsection 2.3, and the positions were initialized using PCA, following the recommendations

obak and Berens [47]. The appropriate learning rate is selected according to 𝑚𝑎𝑥(200, 𝑛∕12) [76]. All
ents were conducted with 500 iterations. The silhouette coefficient was computed using the implementation

ikit-learn [71] 5.
feature scorers were chosen to generate the visualizations: Kruskal-Wallis Filter, Mutual Information, mRMR,
Lasso, Decision Tree, Random Forest, Linear SVM, and Neural Network. These algorithms represent the

scoring strategies discussed in Subsection 2.1, as summarized in Table 2. All their outputs are feature
nce weights between zero (irrelevant) and one (relevant), so the method presented in Section 3 can be applied.
chine learning-based methods are further described and discussed in Subsection 4.1. The neural network was
using Keras with the TensorFlow backend. The experiment with the XOR dataset had two hidden layers of 20
each, ReLU activation and L1 regularization with a factor of 0.001. The network trained for the regression
two hidden layers with 128 and 64 neurons, and the network for the mouse cortex dataset had four hidden

ith 100, 200, 100, and 100 neurons. For the other experiments, the neural network had four hidden layers
neurons each and L1 regularization with a factor of 0.01. Because the goal of the experiments is only to

e functionality of weighted t-SNE, the other scorers were trained using the recommended hyperparameters of
plementations from scikit-learn [71]. Further details about each feature scorer and how feature importance is
d are present in the Supplementary material. Weighted t-SNE can even be used to compare different sets
parameters for the same feature scorer. In addition to the scorers, the results for “no scoring” are also shown,
nding to a standard t-SNE visualization of the original high-dimensional data.
results for each binary classification dataset are shown in the Fig. 2, Fig. 3, Fig. 4, and Fig. 5. As an example
tility of the weighted t-SNE, the user can compare the visualizations of each feature scorer to the original

each other and inspect which ones have better results. For instance, it is clear from Fig. 2a that the XOR
with all the original features does not have distinguishable classes (as expected because most of the features
om). Considering the data modified to reflect the weights of the feature scorers, some structure starts to appear
isualizations. However, for this dataset only ReliefF (Fig. 2e), Random Forest (Fig. 2h), and Neural Network
were able to capture the correct structure of XOR. The two classes in these figures appear separated into four

because each cluster contains samples of one of the four possible combinations of the two relevant features. For
, the class 0 (in red) is split between two clusters (0⊕ 0 and 1⊕ 1). The challenge of this dataset is to identify

s://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_uncorrelated.html
s://opentsne.readthedocs.io/en/latest/
s://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html

i et al.: Preprint submitted to Elsevier Page 11 of 27



Journal Pre-proof

Table 2
Properti
how inte

the non-
were th
scored t

The
features
and the
clusters
was able
as it is h
only 50
“perfect
a score
in the fi
case, th
which fi
differen
a “hidde
visualiz

The
dimensi
make fo
of the li
the mRM
data in F
able to s
user tha
as a har

Ano
cancer d
outlier c
in the v
together
GSM55
from the
sample

6http
7http

BI Grisc
Jo
ur

na
l P

re
-p

ro
of

Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

es of the feature scorers used in the experiments. The type refers to how the scorer works and the correlation to
ractions between features are treated.

Scorer Type Correlation Reference
Kruskal-Wallis Filter Univariate [30]
Mutual Information Filter Univariate [32]
mRMR Filter Multivariate [31]
ReliefF Filter Multivariate [33]
Lasso Embedded Multivariate [35]
Decision Tree Embedded Multivariate [77]
Random Forest Ensemble Multivariate [36]
Linear SVM Embedded Multivariate [78]
Neural Network Embedded Multivariate [10]

linear relationship between the variables among very noisy data. The three scorers with the best visualization
e ones that gave larger importance scores to the only two relevant features. For instance, the random forest
he two relevant features with a 0.99 and a 1.0, and all other features were scored with less than 0.2.
same happens for the Synth dataset in Fig. 3, which like the XOR dataset, is composed mainly of random

. However, this time the two algorithms with the apparent best results are the Kruskal-Wallis Filter (Fig. 3b)
ReliefF (Fig. 3e). The algorithm used to create the Synth dataset [70, 71] builds the classes by initially creating
of points normally distributed, which may explain why a simple statistical method like the Kruskal-Wallis Filter
to obtain a good result. The size of this dataset also presents a great challenge for models based on classifiers,

ard to learn the correct relationships with only 100 data points in the space of five thousand features, of which
are relevant. Interestingly, Kruskal-Wallis Filter and ReliefF were able to “outperform” a visualization with
” selection (Fig. 6a). In this case, a “perfect” selection was created by weighing all fifty relevant features with
of one and all remaining features with zero. However, this scenario did not create a clear class separation
nal visualization (Fig. 6b). This example also illustrates the point made at the end of Subsection 2.3. In this
e “perfect” selection is equivalent to the visualization of a feature selection applied to the Synth dataset, in
fty features were selected. In feature selection, the importance score of each feature is disregarded, generating
t results from the weighted t-SNE approach. This result shows that incorporating importance scores can reveal
n” structure in the visualization. While not equivalent, both strategies can be used to make complementary

ations of feature scoring and selection.
most relevant features (genes) are unknown for the two cancer datasets in Fig. 4 and Fig. 5. Moreover, the
onality is one order of magnitude larger than the synthetic datasets with fewer samples. These characteristics
r a more challenging analysis, as is often the case with real-world data. Even so, by inspecting the visualizations
ver cancer dataset, it is possible to distinguish between scorers that are splitting the two groups (for instance,

R in Fig. 4d and Neural Network in Fig. 4j) and those that are not (Fig. 4f, Fig. 4i). For the prostate cancer
ig. 5, most visualizations do not split the two classes. The use of weighted t-SNE shows that the scorers are not
core features in a way that visually improved data classification. In this case, the visualization helps inform the
t further experimentation may be needed. This outcome is actually expected because this dataset is described
d classification and clustering task in the database by Feltes et al. [2].
ther interesting application of weighted t-SNE is in outlier detection. In the regular visualization of the liver
ataset (Fig. 4a), it is impossible to identify any outliers because the two classes are entangled. However, an
an be spotted once the features are weighted using their importance scores and the classes appear separated

isualization. In Fig. 4d, 4h, and 4j, it is possible to see a single hepatocarcinoma sample (red point) clustered
with the normal (healthy) samples (blue points). This sample that appears out of place has the accession code

7108 and is identified as “liver tissue of subject 15, tumor”6. The healthy samples in this dataset were obtained
adjacent tissue of primary hepatocarcinoma samples7, so it is possible that this outlier was actually a healthy

that was mislabeled, or perhaps a tumor sample with contamination from neighboring healthy tissue.
s://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM557108
s://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22405
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

0

1

(a) No scoring (b) Kruskal-Wallis (c) Mutual Information (d) mRMR

(e) ReliefF (f) Lasso (g) Decision Tree (h) Random Forest

(i) Linear SVM (j) Neural Network
: Weighted t-SNE visualization for the XOR dataset. Each figure is the visualization of the 2D embedding with
t-SNE for each of the nine feature scorers, plus the original data in “no scoring.” Each red or blue point represents

ple from one of the two classes. The color legend is shown in Fig. 2a and omitted in the other figures.

entioned in Subsection 2.4, the silhouette coefficient can be used to summarize the results of the visualization
re importance [20] (Fig. 2, Fig. 3, Fig. 4, and Fig. 5). The silhouette coefficient for each scorer and dataset is
n Table 3. The scorers with the best visual split between classes have the larger silhouette coefficients. Table 3
ws the Kullback–Leibler divergence of each t-SNE optimization in the KL columns. The complimentary
presents the trustworthiness of each 2D visualization presented in this work, as discussed in Subsection 2.5. It
puted using the scikit-learn implementation 8.
first analysis to be made is to compare the silhouette coefficients of each scoring to the coefficient obtained
scores as a baseline to be beaten. Table 3 also allows comparing the original high-dimensional space and the
edded space from t-SNE. Because of the behavior of distance metrics in high dimensions [79], the silhouettes
riginal space tend to be closer to zero than in the embedding space. The expected behavior is for the patterns
rs with larger or smaller coefficients to be preserved in the high-dimensional and embedded spaces.
ser interested in incorporating a feature scorer in a larger analysis pipeline can then use weighted t-SNE to
hich of the available options better suits their specific dataset or task. The user would select a few scorers they

inspect, get the importance of the features from each of them, and then generate the weighted visualizations
scorer being tested and a regular t-SNE plot for the dataset. Then, they can use the visualization and the
nding silhouette coefficients to select the scorer that produced the best or expected results. The following
ps://scikit-learn.org/stable/modules/generated/sklearn.manifold.trustworthiness.html

i et al.: Preprint submitted to Elsevier Page 13 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

lass A

lass B

(a) No scoring (b) Kruskal-Wallis (c) Mutual Information (d) mRMR

(e) ReliefF (f) Lasso (g) Decision Tree (h) Random Forest

(i) Linear SVM (j) Neural Network
: Weighted t-SNE visualization for the synthetic 2-classes dataset. Each red or blue point represents one sample
e of the two classes. The color legend is shown in Fig. 3a and omitted in the other figures.

ent illustrates and validates this idea. A simple k-nearest neighbors (kNN) [80] classifier (𝑘 = 3) was trained
of the datasets using the different scorers (including the baseline case with no scores). The kNN was chosen to
ases in the results from other classifiers used as scorers, such as SVM or decision tree. The results in Table 3
1-scores [81] of the kNN on the test sets (a 33% split from the complete dataset). As can be seen, the feature

with better silhouette coefficients achieved higher classification performance. Thus, together with other metrics
lyses, the weighted t-SNE visualization can be used to select the best feature scorers for a classification pipeline.
achine learning interpretability
n though machine learning has become widespread in the past years and many models achieved state-of-the-
lts in challenging tasks, the more complex models, especially deep learning or large ensemble models such
m forests, are still widely regarded as “black-boxes” [11, 10]. Their intrinsically complex structures make

ng or predicting their behaviors hard. The learned features are only implicitly described by many internal
arameters [82]. The lack of explainable decisions can lead to under-performance, distrust, or machine bias
84]. The techniques that help humans to understand the cause of a decision made by a machine learning model
n as interpretable or explainable machine learning.

experiments above show that weighted t-SNE can be used to visualize the feature importance learned by a few
machine learning models, such as decision trees, random forest, Lasso, SVM, and neural networks. For the
, the feature importance measures the total reduction of the impurity brought by that feature (Gini importance),

i et al.: Preprint submitted to Elsevier Page 14 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

heptocarcinoma

normal

(a) No scoring (b) Kruskal-Wallis (c) Mutual Information (d) mRMR

(e) ReliefF (f) Lasso (g) Decision Tree (h) Random Forest

(i) Linear SVM (j) Neural Network
: Weighted t-SNE visualization for the liver cancer dataset. Each red or blue point represents one sample from
he two classes. The color legend is shown in Fig. 4a and omitted in the other figures.

er words, how well that feature is splitting the classes inside the model [85, 11]. The reduction of variance or
ex in relation to the parent node should be summed for all splits using the feature and scaled to 100 to compute
all importance of a feature in a decision tree [11]. For the linear SVM and Lasso, both being linear models,
cients assigned to the features during training time can be used to measure their importance to the model. For

etworks, the feature importance was computed using relevance aggregation [10], an algorithm suited for tabular
t uses Layer-wise Relevance Propagation (LRP) [86] to measure the impact each feature has in the output of
ork. The calculation of feature importance for each model is described in more detail in the Supplementary
l.
ghted t-SNE can help interpret these methods by visually displaying the impact of the importance of the learned
. In the example shown in Fig. 1, it is visible that the neural network is giving more importance to features that
parate the samples across their target values. The synthetic regression dataset has only four truly relevant
out of 100, and the neural network in Fig. 1 gave the largest importance scores to three of them (0.44, 0.40,

spectively, while the next largest score of 0.20 was given to an irrelevant feature and the fourth truly relevant
eceived a score of 0.11). In the example of Fig. 2, one can visually intuit that the neural network and the random
arned a correct representation of the problem and that the decision tree and the linear SVM did not before even
he accuracy of these models. It is important to highlight that the linear SVM was already expected not to be able
rm well on the XOR dataset, a non-linear problem, as it, by definition, cannot find non-linear relations between
. However, as the goal of the experiments is to analyze the visualizations and not the scorers, the weighted

i et al.: Preprint submitted to Elsevier Page 15 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

rmal

ostate tumor

(a) No scoring (b) Kruskal-Wallis (c) Mutual Information (d) mRMR

(e) ReliefF (f) Lasso (g) Decision Tree (h) Random Forest

(i) Linear SVM (j) Neural Network
: Weighted t-SNE visualization for the prostate cancer dataset. Each red or blue point represents one sample
e of the two classes. The color legend is shown in Fig. 5a and omitted in the other figures.

isualization of the linear SVM results is accomplishing its goal of showing that this is not a suitable scorer for
.
7 shows the results for larger real-world datasets. The mouse cortex dataset has over 20 thousand samples, over
and features, and 23 classes. Visualizing the scores learned by three distinct machine learning models, namely
ig. 7b), random forest (Fig. 7c), and neural network (Fig. 7d) using weighted t-SNE reveals that the models

ter performance (larger F1-score) also produced a better split of samples in the 2D embedding (larger silhouette
nt). The regular t-SNE visualization of the dataset (Fig. 7a) may appear different from other publications, for
, from its depiction by Kobak and Berens [47], because we purposely did not perform feature selection and
tering protocols running the t-SNE algorithm. This is necessary because we wish to compare feature scorers
biases introduced by other algorithms.
arding the visualization of the importance scores obtained with neural networks, especially in the case of
d t-SNE (Fig. 8a), it is essential to differentiate it from the visualization made by projecting the layers activation
) (the internal state of the network for a given input) [87]. In the case discussed here, what is visualized is the
importance of the original data dimensions as learned by the neural networks. So it is a direct representation
put features. In the second case, the visualization is of the neural network’s internal data representation and

t directly map to the input features. One option does not invalidate the other, and both can be used together to
the understanding of a model, as presented in Fig. 8. While both visualizations show that the neural network

i et al.: Preprint submitted to Elsevier Page 16 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

(a) Kruskal-Wallis (b) “Perfect” selection
: Comparison between the Kruskal-Wallis Filter and a “perfect” selection. Each figure is the visualization of the
edding with weighted t-SNE for the results of Kruskal-Wallis Filter and a “perfect” selection. This visualization
the synthetic dataset with 5000 features, in which only 50 are relevant. The “perfect” solution weights all relevant
with a score of one and all noisy features with a score of zero. Details as in Fig. 3.

te coefficient, KL divergence, and F1-score of a kNN trained on the data for four distinct datasets and nine
scorers. The HD columns show the silhouette coefficient for the original high-dimensional space, the 2D columns
e silhouette coefficient for the 2D embedding representation learned by t-SNE, and the KL columns show the
–Leibler divergence from the t-SNE optimization. For each scorer, the silhouette coefficient is computed considering
rization of the dimensions by their importance, except for “no scoring.” The kNN column shows the F1-score on
t (33% of samples) of a kNN trained on the datasets using the importance scores.

XOR Synth Liver Prostate
HD 2D KL kNN HD 2D KL kNN HD 2D KL kNN HD 2D KL kNN

No scoring 0.000 0.003 2.12 0.58 0.001 -0.009 0.16 0.63 0.038 0.038 0.14 0.68 0.008 0.046 0.51 0.58
skall Wallis 0.004 0.010 0.48 0.51 0.041 0.609 0.56 1.00 0.183 0.449 0.15 0.94 0.072 0.196 0.35 0.71
nformation 0.000 -0.001 1.19 0.54 0.006 0.180 0.69 0.66 0.133 0.234 0.15 0.94 0.025 0.121 0.49 0.68

mRMR 0.000 -0.002 0.74 0.54 0.008 0.030 0.77 0.56 0.228 0.560 0.18 0.94 0.031 0.156 0.54 0.66
ReliefF 0.104 0.204 0.80 1.00 0.005 0.433 0.33 0.97 0.128 0.333 0.18 0.94 0.018 0.126 0.48 0.68
Lasso 0.000 0.005 1.54 0.55 0.001 0.052 0.16 0.60 0.039 0.033 0.14 0.68 0.008 0.027 0.51 0.55

cision Tree -0.001 -0.002 0.65 0.58 0.050 0.058 0.48 0.61 0.358 0.422 0.07 0.81 0.078 0.122 0.42 0.71
om Forest 0.089 0.204 0.91 1.00 0.014 0.045 0.74 0.67 0.235 0.490 0.21 0.94 0.052 0.162 0.51 0.73
inear SVM 0.000 -0.001 1.59 0.56 0.002 0.180 0.19 0.64 0.040 0.037 0.16 0.81 0.008 0.049 0.55 0.60
al Network 0.148 0.192 0.49 1.00 0.014 0.200 0.65 0.85 0.387 0.782 0.17 0.94 0.098 0.200 0.40 0.73

to split the two classes of the XOR dataset, weighted t-SNE presents the samples regarding the input features
ataset so that the final plot resembles the XOR function.
ghted t-SNE can also be applied at different moments during the training of the neural networks, allowing
alization of the learning process according to the current feature importance scores. Fig. 9 and Fig. 10 show
visualization changes at different training epochs and how the networks “learn” to split the samples into their
as the training progress. Table 5 shows that the training loss of the neural networks is inversely correlated to
esponding silhouette coefficient, indicating that improving the prediction also improves the feature scoring,
ulting in better clustering in the 2D embedding.
ar, our experiments have focused on the relationship between cluster visualization in weighted t-SNE, silhouette
nt, and prediction performance. The key takeaway was that feature scorers producing clearer clusters in
d t-SNE tend to correlate with higher classification performance, as evidenced by the kNN classifier results in
the alignment of silhouette coefficients with F1-scores in Fig. 7, and the correlation between neural network
silhouette scores in Fig. 10 and Table 5. These findings suggest that weighted t-SNE can be a useful tool for

g feature scorers that improve downstream prediction in supervised learning pipelines. This focus was due to
ance of feature scoring in supervised learning and the need to somehow quantify an intrinsically visual and

tative result such as weighted t-SNE visualizations. Because labeled datasets were used in the experiments, it
air to assume that the data is clusterable, as the samples are already sorted into predefined classes. However,
i et al.: Preprint submitted to Elsevier Page 17 of 27
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

rthiness 𝑇 (7) of the 2D t-SNE and weighted t-SNE projections for all datasets and feature scorers.

XOR Synth Liver Prostate Regression Mouse cortex
No scoring 0.814 0.653 0.939 0.809 0.714 0.548
Kruskal-Wallis 0.997 0.863 0.949 0.896 - -
Mutual Information 0.978 0.728 0.949 0.843 - -
mRMR 0.990 0.792 0.937 0.821 - -
ReliefF 0.978 0.701 0.954 0.826 - -
Lasso 0.934 0.648 0.943 0.815 - 0.995
Decision Tree 0.987 0.921 0.984 0.930 - -
Random Forest 0.974 0.806 0.937 0.871 - 0.998
Linear SVM 0.930 0.647 0.937 0.797 - -
Neural Network 0.993 0.834 0.956 0.921 0.681 0.979

correlation between training loss of neural network and the corresponding silhouette coefficient of the weighted
D embedding.

Dataset Correlation
XOR -0.85
Synth -0.37
Liver -0.81
Prostate -0.67
Regression -0.74
Mouse cortex -0.98

ng connection between cluster clarity and classification accuracy raises an important question: if accuracy
es with better feature scoring, is visualization even necessary, or would prediction metrics alone suffice?
how that weighted t-SNE reveals insights beyond what prediction metrics can capture, we devised the following
ent. We created a synthetic dataset with three classes, 500 samples, and 150 features, where each class is
by five relevant features (15 relevant features in total), while the remaining features contain only noise. The
dataset contained three distinct classes: red, blue, and cyan, as shown in Fig. 11. However, before training, we
y merged the blue and cyan samples into a single class, reducing the task to a binary classification problem
red and blue. We then trained two random forest models (A and B) on this binary-labeled dataset using the

perparameters. Both models achieved identical classification performance: F1-score of 0.99 on training and
test. However, because of the random initialization of the algorithm, each random forest assigned different
mportance scores, despite reaching the same F1-scores. The weighted t-SNE projections for both models are
n Fig. 11. Random Forest A (Fig. 11a) groups the samples into two clusters, red and blue, strictly following
ry classification labels, ignoring internal structure within the blue class. Random Forest B (Fig. 11b) instead
s three clusters, preserving the original three-class structure, even though it was trained on a binary task.
ifferences arise because each model relied on different features, as seen in Table 6, which lists the top ten
portant features for both models. Even though they achieved the same F1-scores, they assigned importance to
t features, ultimately influencing how the samples were structured in the visualization.
inguishing between these two models based solely on F1-scores would be impossible. The models are equally
ve, yet one preserves meaningful structure in the data while the other does not. This highlights a limitation of
ediction metrics alone to evaluate feature scorers: they do not capture how scorers organize the data or whether
eal hidden structure. This raises the interesting question of which model is better. We argue that there is no single
answer. If the decision to merge blue and cyan was intentional, then Random Forest A is preferable because it

this labeling choice. If the user was unaware that blue contained two distinct subgroups, then Random Forest
des a valuable insight, revealing that the merged class actually contains two coherent clusters. In either case,
d t-SNE provides an intuitive way for users and domain experts to inspect feature scoring, offering insights
ld be difficult to extract from raw feature importance values alone, especially in high-dimensional datasets.

i et al.: Preprint submitted to Elsevier Page 18 of 27
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(a) No scoring
F1-score: - | SC: -0.190
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(b) Lasso
F1-score: 0.43 | SC: -0.226
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(c) Random Forest
F1-score: 0.72 | SC: 0.346
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(d) Neural Network
F1-score: 0.98 | SC: 0.385

: Weighted t-SNE visualization for the mouse cortex dataset. Each figure is the visualization of the 2D embedding
ghted t-SNE for three machine learning models, plus the original data in “no scoring.” The captions describe the
of each model and the silhouette coefficient (SC) of each 2D embedding. Each color corresponds to a different
llowing the scheme from Kobak and Berens [47], warm colours correspond to inhibitory neurons, cold colours
nd to excitatory neurons, and brown or grey colours correspond to non-neural cells.

le this is a synthetic example, similar situations frequently occur in real-world applications where interpretabil-
tical. In fraud detection, one model may prioritize transaction history while another focuses on user behavior.
ay achieve the same fraud classification accuracy, but a domain expert might prefer one feature set over the
pending on interpretability needs.
ghted t-SNE can be especially useful for the interpretability of neural networks applied to tabular datasets
the examples in Table 1. Empirical evidence has shown that providing good explanations for networks with
lly connected layers, commonly used in tabular datasets, is hindered by a lack of selectivity [88]. In works

n transformers, the attention layer is restricted to categorical features and is not applied to continuous features
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Assessing Feature Scorer Results on High-Dimensional Datasets with t-SNE

(a) Weighted t-SNE (b) Activation of last layer neurons
: Comparison between the weighted t-SNE and the activation of the neurons in the last layer of a neural network.
left is the same weighted t-SNE presented in Fig. 2j, and on the right is the neurons’ activation of the last layer
the softmax function) of the same neural network. Because this layer only has two neurons, the activation of the
ron is on the x-axis and the activation of the second neuron is on the y-axis. Visualization details of the XOR
as in Fig. 2.

(a) Epoch: 45
Loss: 0.844
SC: -0.0008

(b) Epoch: 90
Loss: 0.726
SC: 0.0875

(c) Epoch: 135
Loss: 0.366
SC: 0.1992

: Visualization of the training of a neural network with the XOR dataset. Each figure shows the weighted t-SNE
feature scores of a specific training epoch of a neural network. Each caption describes the training epoch, the
loss, and the silhouette coefficient (SC) of the 2D embedding. Visualization details of the XOR dataset as in
n animation of this plot is available at https://sbcblab.github.io/wtsne/.

ich is a large short-back for interpreting results for data comprising mainly of this kind of features, such as
ression data. Meanwhile, surrogate models such as Local Interpretable Model-Agnostic Explanations (LIME)
on defining a neighborhood, which is not well defined for tabular data [11], even though newer methods are

g solutions for this issue [91, 92]. In this context, the use of weighted t-SNE in conjunction with methods like
e aggregation can be a new and helpful tool for inspecting neural networks trained on tabular datasets [10].
r with other metrics, such as the training loss, it can help researchers and practitioners decide if the model
ing their expectations. While outside the scope of the current work, the visualization of deep features using
d t-SNE is also a possible future direction discussed in Section 5. It would include adapting weighted t-SNE
uctured data types, such as images and text, by integrating gradient-based feature attributions or deep learning
tability techniques.
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(a) Epoch: 2
Loss: 19.65 | SC: -0.049
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(b) Epoch: 4
Loss: 9.07 | SC: 0.246
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(c) Epoch: 6
Loss: 4.56 | SC: 0.344
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(d) Epoch: 8
Loss: 3.86 | SC: 0.367

0: Visualization of the training of a neural network with the mouse cortex dataset. Each figure shows the weighted
r the feature scores of a specific training epoch of a neural network. Each caption describes the training epoch, the
loss, and the silhouette coefficient (SC) of the 2D embedding. Visualization details of the mouse cortex dataset
. 7. An animation of this plot is available at https://sbcblab.github.io/wtsne/.

mitations
le weighted t-SNE provides a novel approach to visualizing feature scorer results, it has certain limitations
uld be acknowledged and contextualized. Unlike traditional t-SNE, which works directly on raw data, our
requires a precomputed set of scores from a feature scorer. If these scores are unreliable or poorly computed,
alization may misrepresent the structure of the data. However, this is an inherent challenge in feature scoring
ther than a flaw in weighted t-SNE. Moreover, this limitation is mitigated by the very purpose of weighted
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(a) Random Forest A (b) Random Forest B
1: Comparison using weighted t-SNE between two random forests with the same hyperparameters. Both of them
the same training F1-score of 0.99 and test F1-score of 0.93 Even so, they scored features differently, resulting in

visualizations. The two random forests were trained to label the red samples from the blue and cyan samples in a
lassification.

mportance of the ten top ranking features of the two random forests from Fig. 11.

Random Forest A Random Forest B
Feature Importance Feature Importance
rel14 0.150922 rel13 0.126705
rel11 0.144392 rel15 0.112081
rel15 0.116410 rel11 0.111083
rel12 0.100376 rel14 0.075461
rel7 0.046047 rel9 0.068682
rel13 0.036134 rel6 0.046066
rel10 0.033920 rel12 0.043192
rel6 0.027337 rel8 0.040205
rel3 0.021719 rel10 0.037155
rel4 0.019296 rel4 0.026757

it allows users to compare different feature scorers visually, helping identify cases where a scorer produces
ing importance rankings. Unlike standard t-SNE, which is typically used in unsupervised exploratory analysis,
d t-SNE depends on labeled data to obtain feature importance scores. While this may contradict the usual
vised nature of dimensionality reduction, this is a necessary property of most feature scorers, as feature
nce usually requires a target variable to be defined. Nonetheless, future work could investigate unsupervised
coring techniques to expand the applicability of weighted t-SNE to unlabeled datasets. Like traditional t-SNE,
d t-SNE inherits some sensitivity to hyperparameters such as perplexity and learning rate. However, weighted
self does not significantly increase computational cost beyond standard t-SNE, since the feature weighting step
ple transformation.
ure selection methods are often evaluated by classification or regression accuracy, and weighted t-SNE does
ctly optimize for these metrics. This is by design, as our goal is not to replace accuracy-based evaluation but
lement it with interpretability and visualization. Feature importance scores affect model behavior in ways
uracy alone cannot reveal: for example, two models with similar predictive performance may use completely
t feature sets, which would be difficult to analyze numerically but can be visually assessed with weighted
n future work, a hybrid evaluation strategy could be developed that incorporates both accuracy-based metrics
alization to provide a more holistic assessment of feature scorers.
all high-dimensional datasets exhibit clear cluster structures, making it difficult to interpret whether a

ation is “better” based on apparent separability. However, weighted t-SNE does not assume that data must
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erable, rather, it shows how feature scorers influence the structure of the data visualization. In cases where
ingful separation appears, this is itself useful information: it suggests that the scorer may not be effectively
g feature relevance. Future research could explore alternative evaluation metrics beyond the silhouette
nt to assess the quality of weighted t-SNE projections in non-clusterable datasets. We used the silhouette
provide a numerical approximation of the separability observed in the visualizations. However, the silhouette
not without limitations. It is usually higher for convex clusters than for other types of clusters. Other clustering
indices, such as the Davies-Bouldin index or Dunn index, could be explored in future work to complement or
is approach. Since weighted t-SNE is fundamentally a visualization tool, numerical cluster metrics should be
ted with caution, and user discretion is always recommended.
ghted t-SNE is, by design, a comparative and contrastive tool. The visualizations are only meaningful when
ted in relation to a baseline, typically, a regular t-SNE projection of the original dataset without feature scores.
weighted t-SNE visualization from one scorer, without comparison to a baseline, provides limited insight into
feature importance scores affect the data structure. Users should always compare weighted t-SNE outputs to

inal unweighted t-SNE, as only then can the changes introduced by feature scores be properly assessed.
experiments were conducted exclusively on tabular datasets, and the adaptation of weighted t-SNE to other
es, such as text or image data, remains an open challenge. In structured tabular data, feature importance is
well-defined, making weighted t-SNE straightforward to apply. However, feature importance in unstructured

ch as deep learning feature maps for images or attention weights for text, follows different paradigms.

clusion
work introduced weighted t-SNE, a novel visualization technique that enhances the inspection of feature

algorithms. The method allows users to visually assess feature scorers, providing an intuitive alternative
rical importance values and predictive metrics. A series of experiments demonstrated the effectiveness of
d t-SNE across nine feature scorers, two synthetic datasets, and two cancer microarray datasets. The key
were: Feature scorers with higher classification performance tended to produce clearer clusters in weighted
isualizations, as confirmed by silhouette coefficient analysis (Table 3, Fig. 7 Table 5). The visualization of
cores using weighted t-SNE is different from the visualization of feature selection (Fig. 6) or internal model’s
ers (Fig. 8). Weighted t-SNE enabled direct visual comparison between scorers, revealing differences in how
uctured the data, which would be difficult to discern from raw importance values (Fig. 2, Fig. 3, Fig. 4,
The visualizations generated with weighted t-SNE are trustworth in regard of the high-dimensional data
). Outlier detection was improved, as weighted t-SNE made it easier to visually identify samples that were

se obfuscated by irrelevant features in high-dimensional space (Fig. 4). In regression tasks, weighted t-SNE
ully reflected the importance of continuous target variables, extending its applicability beyond classification
. Tracking model learning over time was made possible, as weighted t-SNE was used to visualize changes
re representations across neural network epochs, helping assess how models evolve during training (Fig. 9,
. Weighted t-SNE successfully guided feature scorer selection, allowing us to identify feature scorers that
d the F1-score of an independently trained kNN classifier (Table 3). An experiment with two random forests
that even models with identical predictive performance can assign importance to different features, leading
ct visualizations, an insight that accuracy-based evaluation alone fails to provide (Fig. 11, Table 6). These
stablish weighted t-SNE as a valuable tool for feature importance analysis in machine learning. It enhances

importance analysis by providing a contrastive, visual tool that reveals differences between feature scorers,
outlier detection, tracks model learning, and helps select feature scorers that improve downstream tasks.
ccuracy-based evaluation or raw importance values, it uncovers hidden structure, preserves meaningful feature

ships, and integrates seamlessly into machine learning workflows.
e ideas based on weighted t-SNE can be developed in the future. Techniques such as joint t-SNE [93] could be
improve the comparability between the 2D embeddings of several scorers, and alternatives exploring other
ms like the UMAP instead of the t-SNE can be tested. One possible future research is regarding the use
hted t-SNE to visualize the importance of deep features in modern deep learning models. Here we define
tures as abstract features extracted from deep learning models, such as convolutional neural networks or

mers. However, this would require modifications to account for the unique characteristics of deep features,
their abstract nature and context-dependence (e.g., image, text, or time-series data). The method would need
t a specific deep learning model and specialized feature scorers (e.g., gradient-based methods like Grad-CAM
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ttention mechanisms [95]), and find the interpretation of high-dimensional embeddings, maybe through sparse
oders [96]. Another research direction is investigating the use of weighted t-SNE in unsupervised learning
by incorporating unsupervised feature importance metrics or exploring interactive visual analytics tools that
namic comparison of multiple feature scorers on the same dataset.
ure importance is not just about improving accuracy. It is about understanding what a model has learned.
d t-SNE provides a powerful interpretability tool by making feature importance visually accessible, helping
tect outliers, uncover hidden structure, track model learning, and align models with domain knowledge. As
rning and explainable AI research continue to focus on image and text data [11], many real-world datasets,

arly in science and business, remain tabular [97]. Weighted t-SNE is well-suited for high-dimensional tabular
, such as gene expression data, where model interpretability is essential for drawing meaningful scientific
ions [2, 28, 7]. By integrating weighted t-SNE into machine learning pipelines, researchers and practitioners

deeper insights into feature importance, ensuring that models not only perform well but also make decisions
n with human understanding.
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e propose an extension of t-SNE to visualize the results of feature scorers.
elevant features have more influence on the position of points in the projection.
e perform experiments on nine feature scorers and six datasets.
eighted t-SNE can be used to compare and choose the best feature scorer visually.
can be used to increase the interpretability of machine learning models.
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