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A B S T R A C T

While vast literature on high-dimensional data visualization is available, there are not many
works regarding the visualization of feature scorers and their results. Feature scorers are
algorithms that assign numerical importance to each feature of multi-dimensional datasets. These
importance scores can be used in several applications, such as feature selection, knowledge
discovery, and machine learning interpretability. There are several feature scorers to choose from,
and often no single metric or ground truth is available to guarantee the quality of their results.
In this scenario, visualization can become valuable to support the decision of which method
to choose and how good its results are. For this goal, this work presents “weighted t-SNE.” It
modifies the relationship between data points in the embedded 2D space to reflect the importance
of each dimension of the original datasets as assessed by a feature scorer. This research discusses
how to implement weighted t-SNE, proposes the silhouette coefficient as a numerical evaluation
of the results, and shows several examples of its use in practice. Synthetic and real-world
tabular datasets are used in the experiments together with nine feature scorers, ranging from
Mutual Information to neural networks. Each feature scorer produces unique visualizations, and
weighted t-SNE can be used to compare and choose the one that better suits a given dataset
and task. Weighted t-SNE can also visually show the importance of features learned by machine
learning models and help us see how they are organizing the data, increasing their interpretability.

1. Feature scorers
In the sections below we give further detail on how each of the feature scorers used in the experiments presented

in the main text compute feature importance. A reproduction of the summary of the feature scorers from the main
text is reproduced in Table 1. The definitions and equations listed below come mainly from the work of Barbieri et al.
[1], Grisci et al. [2], Montavon et al. [3, 4], Molnar [5].

1.1. Kruskal Wallis H test
The one-way analysis of variance (ANOVA) is a statistical technique that evaluates variation within and across

groups (i.e., within a random variable and between different variables, respectively) to determine whether a set of
random variables originates from the same distribution. In this study, we employ the Kruskal-Wallis H test, a non-
parametric alternative to ANOVA. Unlike ANOVA, this test does not require the assumption of normally distributed
data. Its mathematical definition is outlined in Equation 1.
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Table 1
Properties of the feature scorers used in the experiments. The type refers to how the scorer works and the correlation to
how interactions between features are treated.

Scorer Type Correlation Reference
Kruskal-Wallis Filter Univariate [6]
Mutual Information Filter Univariate [7]
mRMR Filter Multivariate [8]
ReliefF Filter Multivariate [9]
Lasso Embedded Multivariate [10]
Decision Tree Embedded Multivariate [11]
Random Forest Ensemble Multivariate [12]
Linear SVM Embedded Multivariate [13]
Neural Network Embedded Multivariate [2]

Where 𝑘 is the number of compared groups, 𝑛 is the total number of samples, 𝑛𝑖 is the number of samples in the
𝑖-th group, and 𝑅2

𝑖 is the sum of the values in the 𝑖-th group.

In feature scoring, the goal is to give a numerical importance value to features that most effectively distinguish
the target class. To achieve this, we compute the Kruskal-Wallis H test score for each feature by grouping its values
according to the target class. Features with higher test scores are then selected [14]. Since this method evaluates each
attribute independently in relation to the target class, it is considered univariate and does not account for potential
relationships or dependencies between features.

1.2. Mutual Information
A core concept in information theory is entropy, which quantifies the uncertainty associated with a random variable

in predicting the likelihood of an event [7]. The entropy 𝐻(𝑥) of a random variable is mathematically expressed in
Equation 2.

𝐻(𝑥) = −
𝑛
∑

𝑖=1
𝑃 (𝑥𝑖) log2(𝑃 (𝑥𝑖)) (2)

Where 𝑛 is the total number of instances, 𝑥 is a random variable, 𝑥𝑖 is the i-th value in the variable 𝑥, and 𝑃 (𝑥𝑖) is
the probability of 𝑥𝑖 occurring.

Building on the idea of entropy, Mutual Information (MI) measures the amount of information one random variable
provides about another [7]. Its formal definition is provided in Equation 3.
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𝑛
∑
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Where 𝑛 is the total number of instances, 𝑥 and 𝑦 are random variables, 𝑥𝑖 and 𝑦𝑖 are the i-th value in the variable 𝑥
and 𝑦, respectively, 𝑃 (𝑥𝑖) and 𝑃 (𝑦𝑖) are the probabilities of 𝑥𝑖 and 𝑦𝑖 occurring, respectively, and 𝑃 (𝑥𝑖, 𝑦𝑖) is the joint
probability of 𝑥𝑖 and 𝑦𝑖 occurring.

Using mutual information, we can assess a feature’s relevance by determining how much information it shares with
the target class. This allows us to rank features based on their computed relevance. Like the Kruskal-Wallis filter, this
method evaluates features individually and does not account for dependencies between them, making it a univariate
approach.

1.3. mRMR
In certain scenarios, we aim to evaluate the contribution of a new variable when added to an existing set of

variables. This can be achieved by assessing both the relevance and non-redundancy of the new variable. The Minimum
Redundancy Maximum Relevance (mRMR) method, introduced by Peng et al. [8], is an iterative feature scoring
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algorithm. It prioritizes features that maximize mutual information with the target class while minimizing redundancy
with respect to the features already included in the selected subset. At each iteration, the algorithm seeks to identify
the feature 𝑥𝑗 that optimizes the criterion defined in Equation 4.

max
𝑥𝑗∈𝑋−𝑆

[

𝐼
(

𝑥𝑗 ; 𝑐
)

− 𝑅(𝑥𝑗 , 𝑆)
]

(4)

Where 𝑋 is the set of all attributes, 𝑆 is the set of already selected features, 𝐼 is the mutual information function,
and 𝑅 is the redundancy function.

1.4. ReliefF
ReliefF is a widely used algorithm for feature scoring or selection, renowned for its intuitive and efficient approach.

Its key strength lies in its core concept: for each instance in the dataset, it identifies the 𝑘-nearest neighbors from each
class. It then evaluates how much each attribute varies between these instances, making it a lightweight yet effective
method that accounts for feature correlations [15].

The algorithm begins by initializing a weight vector that represents the relevance of each feature. It then selects
an instance and searches for its 𝑘-nearest neighbors within each class. Instances belonging to the same class as the
target instance are referred to as hits, while those from different classes are called misses. The underlying logic is as
follows: if the value of a given attribute 𝐴 differs between the target instance and a miss, 𝐴 is considered a useful
feature for distinguishing between the classes, and its weight is increased. Conversely, if the value of attribute 𝐴 differs
between the target instance and a hit, 𝐴 is less effective at separating classes (since they belong to the same class), and
its weight is decreased. To ensure balance, misses are weighted by the probability 𝑃 (𝑐) of their class occurring in the
dataset, allowing misses and hits to contribute equally. The algorithm ultimately returns a weight vector that reflects
the relevance of each feature.

1.5. Lasso
The Least Absolute Shrinkage and Selection Operator, commonly referred to as Lasso, is a linear regression

technique that incorporates 𝑙1-regularization to enhance prediction accuracy and mitigate overfitting. Its mathematical
formulation involves solving the optimization problem presented in Equation 5.

min
𝛽0,𝛽

{ 1
𝑁

‖

‖

𝑦 − 𝛽0 −𝑋𝛽‖
‖

2
2 + 𝜆‖𝛽‖1

}

(5)

Where 𝑦 is the outcome, 𝑋 is the independent variables, 𝑁 is the number of instances in the data, 𝛽 is the unknown
parameters to be calculated, and 𝜆 is the regularization term. The importance of each feature is simply the coefficient
of that feature in the final regressor.

1.6. Decision Tree
This model represents a decision tree, where each node, structured in a top-down fashion, corresponds to a decision

path determined by specific conditions (typically based on the values of a sample’s attributes during prediction). Each
leaf node, in turn, represents a final label or outcome associated with that particular path. As described by Loh [16],
tree generation algorithms construct the tree recursively from the top down. At each node, splits (decisions) are created
by evaluating attributes using an impurity function (such as the Gini index), which assigns scores to attributes deemed
discriminant. This process continues until the tree is fully formed, with each branch representing a sequence of decisions
leading to a final classification or outcome. Feature importance is calculated as the (normalized) total reduction in the
impurity criterion achieved by that feature, in what is commonly referred to as the Gini importance.

1.7. Random Forest
Random Forest is an ensemble learning algorithm that harnesses the principle of the “wisdom of the crowd” to

reduce the variance in outcomes generated by individual classifiers. The concept of Random Forest was first introduced
by Breiman [12]. It consists of a collection of decision trees, each trained on different subsets of instances created
through bootstrapping (random sampling with replacement). For a given instance, predictions are made by every tree
in the forest, and the final predicted label is determined through a majority voting mechanism. This approach involves
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aggregating the feature weights computed by each tree in the Random Forest into a single averaged feature weight
vector, enabling the ranking of features based on their importance. The feature importance is computed using the Gini
importance as for the decision trees.

1.8. Support Vector Machine
Support Vector Machines (SVM) are a robust and efficient class of algorithms used for both regression and

classification tasks. The method works by constructing an 𝑛-dimensional hyper-plane or a set of hyper-planes that
optimally separate instances by class, maximizing the margin—the distance between the hyper-planes and the nearest
instances from each class [13].

To handle cases where the data is not perfectly linearly separable, SVM employs the soft-margin approach, utilizing
the hinge loss function. Additionally, it incorporates Thikonov regularization, also known as 𝑙2-regularization, to
improve generalization. The process of computing the classifier is equivalent to solving the optimization problem
defined in Equation 6.

[

1
𝑛

𝑁
∑

𝑖=1
max

(

0, 1 − 𝑦𝑖
(

�⃗� ⋅ �⃗�𝑖 − 𝑏
))

]

+ 𝜆‖�⃗�‖

2 (6)

Where �⃗� is the normal vector to the hyper-plane, 𝑏
�⃗� is the plane offset to from origin along �⃗�, 𝑛 is the number of

instances in the data, 𝑥𝑖 is i-th instance in the data, and 𝑦𝑖 is every 𝑥𝑖 class, which can be either 1 or -1, each representing
one class. For the task of feature scoring, and using a linear kernel for the SVM, the importance of each feature is the
coefficient of that feature in the final model.

1.9. Neural Networks
An Artificial Neural Network (ANN) is a computational model inspired by the structure and function of the

biological brain. It consists of interconnected units called neurons, organized in layers, that work together to process and
learn from data. Each neuron receives input, performs a simple computation, and passes the result to the next layer.
Through training, the network adjusts its connections (weights) to recognize patterns, make predictions, or classify
data. Retrieving feature importance from ANNs is not a trivial task, given their “black-box” nature. However, there
are many methods that try to solve this problem, such as the Layer-Wise Relevance Propagation (LRP) [17] and its
adaptation for tabular data, the relevance aggregation [2].

LRP works computing a backward pass that sends the output of the nework back through its structure, using several
possible rules that take into account the input domain and layer type. The two LRP rules used in this work were LRP-𝛼𝛽
[17] in Equation 7 and 𝑤2-rule [18] in Equation 8.

𝑅𝑗 =
∑

𝑘

(

𝛼
𝑎𝑗𝑤+

𝑗𝑘
∑

𝑗 𝑎𝑗𝑤
+
𝑗𝑘

− 𝛽
𝑎𝑗𝑤−

𝑗𝑘
∑
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−
𝑗𝑘

)
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∑

𝑘

𝑤2
𝑗𝑘

∑

𝑗 𝑤
2
𝑗𝑘

𝑅𝑘 (8)

For both equations, 𝑘 and 𝑗 are the 𝑘-th and 𝑗-th layers, 𝑎 is the output of a neuron, 𝑤+ and 𝑤− are positive and
negative weights, 𝛼 and 𝛽 are constants, and 𝑅 is the relevance signal. The constants follow the property that 𝛼−𝛽 = 1
and 𝛽 ≥ 0 [17]. The 𝑤2-rule is a special case for the input layer when any real-valued input is admissible.

For tabular data, it is adequate to use relevance aggregation. The core concept involves training a neural network
on the target dataset (line 3) and then calculating the relevance of each input for every sample (line 6). The algorithm
employs absolute values to ensure equal consideration of both relevance (positive values) and counter-relevance
(negative values) (line 7). The computed values are rescaled to ensure that all samples contribute equally during
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Algorithm 1: Relevance aggregation
Data: 𝐷𝑛×𝑚: data, 𝑐: classes, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘: neural network
Result: Ordered relevance scores

1 begin
2 𝑅, 𝑆, 𝑠𝑐𝑜𝑟𝑒 ← [ ] ;
3 train 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 on 𝐷𝑛×𝑚;
4 for 𝑠𝑎𝑚𝑝𝑙𝑒1×𝑚 in 𝐷𝑛×𝑚 do
5 𝑜𝑢𝑡 ← predict(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑎𝑚𝑝𝑙𝑒1×𝑚);
6 𝑟𝑒𝑙1×𝑚 ← compute_relevance(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑎𝑚𝑝𝑙𝑒1×𝑚, 𝑜𝑢𝑡);
7 𝑟𝑒𝑙1×𝑚 ← abs(𝑟𝑒𝑙1×𝑚) / max(abs(𝑟𝑒𝑙1×𝑚));
8 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑟𝑒𝑙1×𝑚;
9 end

10 for 𝑓𝑒𝑎𝑡𝑛×1 in 𝑅𝑛×𝑚 do
11 for 𝑐𝑙𝑎𝑠𝑠 in 𝑐 do
12 𝑆𝑓𝑒𝑎𝑡,𝑐𝑙𝑎𝑠𝑠 ← average(𝑓𝑒𝑎𝑡𝑛∈𝑐𝑙𝑎𝑠𝑠);
13 end
14 end
15 for 𝑓𝑒𝑎𝑡1×𝑐 in 𝑆𝑚×𝑐 do
16 𝑠𝑐𝑜𝑟𝑒𝑓𝑒𝑎𝑡 ← average(𝑓𝑒𝑎𝑡1×𝑐);
17 end
18 return sort(𝑠𝑐𝑜𝑟𝑒𝑚×1);
19 end

aggregation (line 7). This step is especially crucial for regression tasks, where differences in target values could
otherwise skew the relevance toward samples with higher target magnitudes.

Aggregation is performed at two levels. The first level operates by class, computing the average of the rescaled
relevance for each input, but only for samples that belong to the same class (line 12). For regression tasks, the default
approach is to treat all samples as part of a single class. This intermediate step of calculating aggregation scores for
different classes enables the distinction of relevance scores between sample groups, recognizing that the neural network
may rely on different sets of features to identify each group. The second level of aggregation involves averaging the
relevance scores across all classes (line 16), producing a global relevance score that can be sorted (line 18). The final
score is derived by averaging the class scores, ensuring that each class contributes equally to the overall result. The
algorithm 1 is reproduced from Grisci et al. [2].
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