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Extensive and complete review on feature selection algorithms and evaluation.
Comparison of different stability metrics.
A new Python framework for implementing and benchmarking feature selection.
Evaluation of several feature selectors regarding many metrics.
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Abstract
The amount of gathered data is increasing at unprecedented rates for machine learning applications
such as natural language processing, computer vision, and bioinformatics. This increase implies a
higher number of samples and features; thus, some problems regarding highly dimensional data
arise. The curse of dimensionality, small samples, noisy or redundant features, and biased data
are among them. Feature selection is fundamental to dealing with such problems. It reduces the
data dimensionality by selecting the most relevant and less redundant features. Thus reducing the
computational cost, improving accuracy, and enhancing the data’s interpretability to machine learning
models and domain experts. However, there are several selector options from which to choose.
This work compares some of the most representative algorithms from different feature selection
groups regarding a broad range of measures, several datasets, and different strategies from diverse
perspectives. We employ metrics to appraise selection accuracy, selection redundancy, prediction
performance, algorithmic stability, selection reliability, and computational time of several feature
selection algorithms. We developed and shared a new open Python framework to benchmark the
algorithms. The results highlight the strengths and weaknesses of these algorithms and can guide
their application.

ntroduction
n contemporary business and scientific endeavors, the
nce on high-dimensional datasets has become paramount.
e datasets often manifest as tabular data, where rows
te instances (i.e., sampled data points’ values), and

ns represent various features characterizing the sam-
data. Applications span diverse domains, including the
sis of gene expression in cancer patients (Feltes et al.,
, 2021), hemogram examination data from COVID-
atients (Avila et al., 2020; Formica et al., 2020; Yan
., 2020; Dorn et al., 2021), e-commerce sales (Sakar
, 2019), and product defect detection (Pes, 2019). These
tabular datasets may encompass dozens to millions of
ns, each representing a feature, input, or dimension

ci et al., 2021). While our focus in this work primarily
rs on continuous or numerical features, it is worth
g that features can also be ordinal or categorical.
he ever-increasing volume of data poses significant
enges, rendering traditional processing methods im-
ical for many machine learning applications. Chal-
s associated with working with high-dimensional data
de the curse of dimensionality, data imbalance, com-
ional complexity, overfitting, and noisy or redundant
(Ang et al., 2015). Consequently, substantial research
ts have been directed towards dimensionality reduction
iques, notably feature extraction and feature selection.
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While feature extraction algorithms aim to project high-
dimensional data into lower-dimensional spaces, feature se-
lection techniques concentrate on identifying and selecting
a subset of relevant features from the original dataset. In
this paper, we delve into the latter aspect. Feature selection
methods play a crucial role in mitigating several afore-
mentioned challenges by reducing the number of attributes
in the dataset, thereby providing machine learning models
and domain experts with a more concise, relevant, and less
noisy subset of features. These methods employ various
strategies, metrics, and criteria to ascertain the importance
of each feature. However, selecting an appropriate feature
selection algorithm remains challenging due to the absence
of a universally applicable metric or ground truth.

Addressing this challenge necessitates quantitatively
evaluating feature selection methods based on various met-
rics. These metrics may include selection accuracy (indicat-
ing how effectively relevant features are chosen) and stabil-
ity (assessing whether the selected feature subset remains
consistent under slight variations in the input data, thereby
enhancing the algorithm’s reliability). In this work, we con-
duct a comprehensive comparison and evaluation of popular
feature selection methods across diverse metrics, including
selection prediction performance, accuracy, redundancy, sta-
bility, reliability, and computational efficiency. Additionally,
we introduce an extensible framework designed to facilitate
the setup, execution, and evaluation of these techniques.

The inspiration for this study is that the escalating vol-
ume of data across diverse domains necessitates ongoing
research in feature selection. Our study is motivated by
the pressing need to address the challenges posed by high-
dimensional datasets and to provide robust solutions that
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Analysis and Comparison of Feature Selection

nce the effectiveness and efficiency of feature selection
odologies. This paper makes several key contributions
field of feature selection. Firstly, we provide a compre-

ive review of classical feature selection methods, high-
ing their properties, inner workings, and applications.
ndly, we propose a systematic, modular, and expandable
ation framework that enables a thorough comparison of
methods across multiple metrics. Thirdly, we present

rical results that offer insights into the performance and
vior of different feature selection algorithms. Lastly,
rovide open-access resources, including datasets and
ython code of the proposed framework, to facilitate
ducibility and further research in the field. Moving

ard, it is imperative to expand and refine the proposed
ework to accommodate evolving methodologies and
ess emerging challenges in feature selection. We also
light that the framework we propose is independent of
h feature selection method is being tested so that even

ost recent developments can be compared to other
ods. This possibility is one of the paper’s main contri-
ns, and we encourage future authors to compare their
feature selection algorithms regarding performance and
lity. By providing access to both summarized data and
nderlying framework, we aim to foster collaboration
dvancement in feature selection research.
his text is organized as follows. Section 2: Related
presents some works that provide some of the con-
and fundamentals used in our work. Subsequently,

on 3: Methods and Concepts introduces the concepts of
re selection, stability, prediction, and statistical meth-
and describes the algorithms that are fundamental to
nderstanding of this work. Then, Section 4: Framework
s the architecture, execution flow, and components
e proposed framework. Next, Section 5: Methodology
ribes the datasets used, how measurements were taken,
how experimentation was conducted. Afterward, Sec-
6: Results and Discussion reports the results obtained
describes the analysis of how different methodologies
rmed. Finally, Section 7 summarizes the most relevant
ts and observations regarding this work and discusses
e improvements and possible research suggestions.

elated Work
revious works have been published to survey and com-
the characteristics of many feature selection algorithms.
section presents a brief review of some studies that are
ly related to feature selection and, thus, to our work.
r et al. (2012) provide a complete survey on filter feature
tion approaches. This work presents filter methods’
amental notions, classifications, and evaluation tech-
s. Although Lazar et al. (2012) do not give empirical

ts, the proposed taxonomy is very informative and thus
d as a good guideline for the development of filter
re selection procedures. Vergara and Estévez (2014)
nt another work that provides fundamental concepts to
of our work’s feature selection methods. They supply

the core notions of Information Theory and put forward
a unified mathematical framework for information-based
feature selection techniques. Molnar (2020) reviews some
feature selection algorithms in the context of interpretable
machine learning, presenting yet another framework for
analysis (Grisci et al., 2021; Gill et al., 2022).

Both Ang et al. (2015) and Miao and Niu (2016) in-
troduce the notions of supervised, semi-supervised, and
unsupervised feature selection. While Miao and Niu (2016)
focus solely on evaluating the accuracy of some of the
novel unsupervised methods, Ang et al. (2015) go further
in presenting fundamentals, theory, and survey of feature
selection methods on gene selection. Ang et al. (2015) bring
up various ways to classify attribute selection approaches
and enlist their main advantages and disadvantages. Besides,
they extensively review feature selection methods and indi-
vidual reported accuracy results published in recent years.
Ang et al. (2015) also discuss some of the problems that arise
when working on gene selection, such as the curse of dimen-
sionality, imbalanced data, and redundancy issues. Lastly,
they state that most studies treat high classification accuracy
as the ultimate goal. Still, more effort should be employed
on research that assesses different evaluation measures and
validation on feature selection.

Moreover, there are similar studies to Ang et al. (2015),
put up by Bolón-Canedo et al. (2014) and Tadist et al. (2019).
Their works also present a review of some of the most popu-
lar approaches to attribute selection and describe some of the
gene microarray databases1 most present in feature selection
literature. Afterward, the classification and feature selection
challenges on such databases are described. Finally, they
show experimentation results by evaluating the accuracy,
sensitivity, and precision of prediction on feature selection
procedures. Grisci et al. (2023) offer a different perspective
by critically reviewing the gene expression datasets used in
the feature selection literature. Njoku et al. (2022) also com-
pare the impact of filter feature selection on classification
performance, and Cilia et al. (2019) focus specifically on
microarrays.

Our work goes even further. We survey and compare
several feature selection approaches regarding prediction
accuracy and other aspects, such as the proportion of infor-
mativeness, redundancy, stability, and reliability in their re-
sults. Also, we compare the computational time that feature
selection approaches take.

As mentioned above, another important topic discussed
in this work is the stability and reliability of feature selection
methods. Khaire and Dhanalakshmi (2019) and Nogueira
et al. (2017) provide and describe the core concepts and
desired properties of feature selection stability. Also, along-
side Mohana Chelvan and Perumal (2016), they survey and
describe some metrics that can assess stability for different
formats of feature selection results. Some of the presented

1Gene Expression Microarrays, also known as DNA microarrays, are
datasets that contain encoded gene expression, usually represented by 6000
to 60000 features, of samples from different individuals of the same species.
Usually, the number of samples lies about a hundred (Bolón-Canedo et al.,
2014).
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Analysis and Comparison of Feature Selection

ics have also been used in our work. The work of
da et al. (2012) reviews methodologies to evaluate sta-

and reduce instability. It shows ways to sample data
omote small perturbations in the dataset to evaluate
lity. Furthermore, Pes (2019) is one of the few other
es that evaluate and compare prediction performance
tability between different feature selection approaches.
research and analysis strategy in their work is very
ar to ours. However, their work focuses on comparing
on-ensemble version versus the ensemble version of
specific feature selection algorithms. In contrast, our
brings up a more general and extendable approach.

larly, Salman et al. (2022) review the stability of ag-
ation techniques in ensemble feature selection.
inally, few implementations of these studies are made

ic, so further extending research on these topics usually
more effort than it could. One exception is the featsel

ework by Reis et al. (2017). It is a C++ implementation
gorithms and cost functions for benchmarking feature
tion. In our work, we intend to provide reference re-
of a comparison between popular feature selection ap-

ches and an extensible Python framework to aid further
rch on the topic.
t is also important to highlight that the research, devel-
ent, and application of new feature selection algorithms

ethods are still relevant in machine learning and data
ce. New developments are constantly being published,
t would be out of the scope of this work to review all of
. However, as an overview of the field’s current state,
omment on some recent works below.
heikhpour et al. (2023) discuss the importance of semi-
rvised feature selection (SSFS) in utilizing both labeled
unlabeled data to choose informative features, mainly
ing on addressing the limitations of graph Laplacian
regularization in preserving data structure and achiev-

xtrapolation. To overcome these issues, the authors pro-
two frameworks: Hessian-based SSFS with generalized
rrelated constraint (HSFSGU) and Hessian–Laplacian-
d SSFS with generalized uncorrelated constraint (HLS-
U). These frameworks utilize Hessian regularization for
taining data structure, mixed-norm regularization for
ble feature selection, and the generalized uncorrelated
traint for preventing excessive sparsity. A unified al-
hm with proven convergence is presented for solving
ex and non-convex cases.
aberi-Movahed et al. (2022) introduce DR-FS-MFMR,
el approach for feature selection in gene expression data
sis. Traditional methods based on matrix factorization
imensionality reduction have limitations in efficiency
eliability. DR-FS-MFMR addresses these shortcomings
scarding redundant features from the original set. It for-
tes the feature selection problem with two key aspects:
ix factorization and correlation information of selected
res. The method enriches the objective function with
ata representation characteristics and an inner product

larization criterion to improve redundancy minimiza-
and sparsity.

Han et al. (2024) present a novel method, RRFS, de-
signed to tackle the challenges of feature selection in multi-
view, multi-label data. Existing methods often overlook
balanced information gain across labels and feature overlap
and fail to exploit correlations between views, features, and
labels. RRFS addresses these issues by integrating feature
relevance and redundancy terms, considering each label’s
information gain and feature redundancy within and between
views. This approach aims to balance label information
acquisition while reducing feature redundancy.

Gao et al. (2021) discuss the challenges posed by high-
dimensional multi-label data and propose a novel approach,
Shared Latent Feature and Label Structure Feature Selec-
tion, to address these challenges. Existing methods often
overlook the impact of latent feature structure on label
correlations. To overcome this limitation, the SSFS method
incorporates a Latent Structure Shared (LSS) term, which
preserves latent feature and label structures. Additionally,
graph regularization ensures consistency between the orig-
inal and latent feature structure spaces. The SSFS method,
derived from the constrained LSS term, is optimized using
an effective scheme with provable convergence.

Gao et al. (2023) introduce a novel feature selection
framework, STFS, to address critical issues in high-dimensio
multi-label data analysis. STFS incorporates two probability
distribution assumptions based on low-order variable corre-
lations and proposes a unified framework comprising three
low-order information-theoretic terms. This framework ef-
fectively captures high-order variable correlations.

Although outside the proposed scope of this work, an-
other important front in feature selection research is the use
of artificial neural networks and deep learning. Neural net-
works have shown promise in automating feature selection
design, offering potential improvements in efficiency and
effectiveness, and the comparison of classical feature se-
lection with deep learning approaches using the framework
proposed in this work is a promising future work. Whiteson
et al. (2005) introduced FS-NEAT, a method extending the
NEAT algorithm, which not only evolves neural network
topology and weights but also determines the appropri-
ate inputs. This approach circumvents the need for meta-
learning or labeled data, demonstrating superior learning
capabilities and smaller network sizes across various tasks.
Grisci et al. (2018) further extended FS-NEAT’s applicabil-
ity to microarray analysis, a domain characterized by high-
dimensional data and limited sample sizes. Their adaptation
showcased the method’s ability to handle both classification
and feature selection simultaneously, yielding biologically
relevant gene biomarkers for diseases like leukemia.

Watts et al. (2019) addressed the challenge of evolving
compact models for high-dimensional datasets with noisy
features. They proposed Blocky Net, a minimalist neural net-
work incorporating built-in feature selection. Comparative
evaluations against NEAT and FS-NEAT highlighted its su-
perior performance, particularly on large datasets, suggest-
ing promising avenues for future research. In a similar vein,

arbieri et al.: Preprint submitted to Elsevier Page 3 of 38
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Analysis and Comparison of Feature Selection

i et al. (2019) leveraged neuroevolution to tackle mi-
ray data analysis, emphasizing the simultaneous clas-
tion and selection of relevant genes. They identified
gically significant genes associated with cancer types
gh rigorous preprocessing and algorithmic enhance-
s, underscoring the method’s potential for biomarker
very.
ecognizing the need for model interpretability, Grisci
(2021) introduced relevance aggregation, a technique

ucidating neural network predictions by identifying im-
nt features. Through empirical validation across diverse
ets, including gene expression and online shopping
vior, they demonstrated the method’s efficacy in fea-
selection and model comprehension, facilitating knowl-
discovery and mitigating machine bias. Overall, these
es collectively underscore the potential of neural net-
s, particularly neuroevolution-based approaches like
EAT and Blocky Net, in automating feature selection
s various domains while addressing challenges related

terpretability and model compactness.

ethods and Concepts
his section presents the fundamental concepts and
odologies used throughout this work. First, in Sub-
on 3.1 and Subsection 3.2, we discuss the kinds and
ifics of the feature selection algorithms used and their
erties, respectively. Subsection 3.3 reviews the predic-
models employed in the study. The metrics to assess
iction are explained in Subsection 3.4. Several statistical
ods and concepts are substantiated in Subsection 3.5
Subsection 3.6. Afterward, all the evaluated feature
tion algorithms are introduced, followed by all the mea-
ents taken into account, in Subsection 3.7. The concept

lgorithmic stability is introduced in Subsection 3.8.
lly, the visualization techniques utilized in this work are
ribed in Subsection 3.9. Figure 1 shows an overview of
oncepts we will introduce here.
Feature Selection
igh-dimensional datasets can often lead to problems
training machine learning models, such as the curse of

nsionality, the small sample problem, too imbalanced
infeasible computational times, model overfitting, and

relevant or redundant data (Ang et al., 2015). Given the
ssity of working with such data types, many dimension-
reduction techniques have been studied over the past
ears.
eature Selection consists of selecting a smaller subset
atures from the original data. These subsets are created
d on some property or satisfying some criteria, such
aximizing prediction accuracy, informativeness, rele-
e, or minimizing redundant and noisy data. In contrast
ture extraction, feature selection does not transform nor

pieces of information, thus providing much more inter-
ble results. For example, understanding which genes are
rentially expressed for a genome is possible with feature
tion but not feature extraction.

Regarding labeling information, feature selection algo-
rithms can be roughly classified as supervised, unsupervised,
or semi-supervised (Miao and Niu, 2016). In the presented
work, we focus on evaluating algorithms that can perform
supervised tasks, which only work for datasets in which
every instance has been labeled beforehand. Classifying
feature selection algorithms by their search strategy is also
ubiquitous in the literature. According to Ang et al. (2015),
algorithms are often grouped as filter, wrapper, embedded,
hybrid, or ensemble methods. Besides labeling and search
strategy, algorithms can be further categorized in terms of
statistical analysis, amount of correlation between features,
determinism, result type, and other properties that go beyond
the scope of this work and so will not be taken into account.
3.1.1. Filter

Filter methods are the earliest approach to feature se-
lection. They are algorithms that rely only on intrinsic data
characteristics before any learning task, therefore having a
better generalization property. They are mainly sub-grouped
in ranking or space search methods (Lazar et al., 2012).

Ranking algorithms are usually simple, fast, and occur
in two steps. Firstly, a relevance score is generated for every
feature, often based on dependency, consistency, informa-
tion, or statistical relevance. Finally, a subset of the highest-
ranked features is selected. Later we will discuss more about
ranking, with two ranking filter methods: Kruskal Wallis H
test Filter, in Subsection 3.5.1, Mutual Information Filter, in
Subsection 3.6.2, and ReliefF algorithm, presented ahead in
Subsection 3.7.4.

The other group of filter techniques is space search
methods. This group transforms the feature selection prob-
lem into an optimization problem with some defined cost
function. A space search approach is then used to select the
subset of features that optimizes the given cost function. This
work evaluates Minimum Redundancy Maximum Relevance
(mRMR), a space search approach later described in Subsec-
tion 3.7.3.
3.1.2. Wrapper

Like space search filtering methods, wrapper techniques
also perform a space search. The main difference lies in the
scoring function. In filtering approaches, the cost function is
defined in terms of data intrinsic characteristics. In contrast,
in wrapper approaches, the cost function is based on the
predictive error of a single classifier.

This strategy often leads to excellent, if not optimal,
selections to the wrapped classifier model because it tries
to minimize the prediction error while considering the non-
linear relation between features. Nevertheless, the main
drawback of wrapper methods is that their cost function
relies on training and predicting at least one model per
iteration (Ang et al., 2015). Thus, this approach has a high
computational cost. Also, wrappers are classifier-specific.
Therefore, they may not yield satisfactory results if the
resulting selection is used with different classifiers other than
the one used in training and become very prone to overfit.

arbieri et al.: Preprint submitted to Elsevier Page 4 of 38
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Analysis and Comparison of Feature Selection

e 1: Structure of concepts and methods discussed in Section 3 and 5. This figure displays the taxonomy of the algorithms,
ation metrics, theoretical background, and selection properties of feature selection. The text sections are indicated by the
sponding names.

ere, we evaluate the following wrapper algorithms’ ap-
ches: SVM Recursive Feature Elimination and Genetic
rithm as SVM wrapper. Both methods are later shown
ore detail in Subsection 3.7.5 and 3.7.6, respectively.
. Embedded
his family of methods utilizes built-in model charac-
ics to select features. The most common approach is
nk features based on the weights a particular classifier
utes to each attribute. This approach suffers from the
problem of being specific to a single classifier (Ang

, 2015). However, it does not require expensive compu-
n as wrapper methods and, yet, tends to yield higher per-
ance in classification accuracy than filter approaches.
valuate three different predictors that perform embed-
election: Decision Trees, Lasso, and Linear SVM. All
predictors are forward defined in Subsection 3.3.
. Hybrid
ybrid methods are generated by combining any feature
tion techniques, such as a filter and a wrapper. This
rs from an embedded method because, in embedded
tion, the ranking of the features is part of the inner

workings of the classifier and not a separate algorithm. The
main goal of hybrid methods is to leverage each method’s
complementary strengths, usually achieving better compu-
tational efficiency than wrapper and yet resulting in more
general subsets with satisfactory prediction results (Ang
et al., 2015). We test a mixture of ReliefF and Genetic
Algorithm as SVM wrapper approaches, further described
in Subsection 3.7.8.
3.1.5. Ensemble

Ensemble methods are methods based upon the concept
of the wisdom of the crowds. The most common approach is
to run a single feature selection method on a different number
of feature-wise subsamples of the training data to gener-
ate additional subsets of selected features. Then, obtained
subsets are aggregated into a single subset, which typically
leads to good approximations of the optimal subset. This
approach’s main strength is that it is very robust for stability
and reliability issues, as it is suitable for high-dimensional
data. We use the Random Forest as an ensemble feature
selector (Subsection 3.7.9).

arbieri et al.: Preprint submitted to Elsevier Page 5 of 38
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Analysis and Comparison of Feature Selection

1
re selectors properties.

Algorithm Algorithm
Type

Selection Format Attributes Correlation Search
TypeSubset Rank Weights Univariate Multivariate

KW Filter Filter ✓ ✓ -
MI Filter Filter ✓ ✓ -
mRMR Filter ✓ ✓ Additive
ReliefF Filter ✓ ✓ -
SVM-RFE Wrapper ✓ ✓ Subtractive
SVM-GA Wrapper ✓ ✓ Both
Decision Tree Embedded ✓ ✓ -
Lasso Embedded ✓ ✓ -
Linear SVM Embedded ✓ ✓ -
ReliefF-GA Hybrid ✓ ✓ Both
Random Forest Ensemble ✓ ✓ -

Properties of Feature Selectors
n this subsection, some properties that feature selec-
may hold are described. Table 1 links these properties
nted below with the feature algorithms that are later

ribed (Subsection 3.7).
. Selection Format
here are some formats that feature selectors may return
erning their results. They can be subsets when the se-
r can only return a vector of indexes to the selected fea-
. Subsets are usually generated by stochastic algorithms
evaluate diverse subset alternatives through the feature
tion process, such as genetic algorithms (described in
ection 3.7.6). The selection format can also be a rank
e attributes, which has two possible representations:
rdered list of the feature indexes, which was sorted
me decision criteria, or a permutation list, that each
ion in the vector represents a feature and the value is
rrent position at the rank. A more in-depth discussion
t rank representation can be found in the works by
i et al. (2022) and Lin (2010).
inally, results can be feature weights, representing the
ance scores that the feature selector attributed to the
res. Weight vectors can be used to generate ranked
ts by ordering the features by their respective weights.
, ranked results can be seen as subsets by removing the
n of ordering. The way back from subset to ranked list
rom ranked list to weight vector is not possible.
he selection format directly impacts how some stability

ics (described in Subsection 3.8) can be measured.
e metrics can only deal with the notion of weights
section 3.8.3), so they can not evaluate selections of al-
hms that yield rankings or subsets. Just as well, several
ics can only deal with rankings (Subsection 3.8.2) and
ot evaluate selections of algorithms that are subsets.
. Univariate or Multivariate
orrelation between two features means that one feature

pendent on the other. In the context of feature selectors,
ding correlation, we can classify methods as univariate
ultivariate (Lazar et al., 2012).

Univariate methods are the ones that evaluate each fea-
ture’s correlation to the target class independently from other
features. The main advantage of these methods is that they
are usually straightforward and fast. However, they may not
be the most accurate techniques as they do not consider
feature synergy.

In contrast to univariate methods, multivariate methods
are approaches that account for the correlation between
features. They often are more complex than univariate tech-
niques. Nevertheless, they are also more robust. We further
explore these concepts when experimenting with the XOR
dataset (described in Subsection 5.1.1), which has a strong
non-linear feature correlation, and Synth_B (described in
Subsection 5.1.2), which contains redundant features.
3.2.3. Search Direction

Search direction indicates in what order feature selectors
achieve a relevant subset regarding adding or removing
features from the candidate subset. Feature selection can
be forward, backward, bi-directional, or none of the before
(Ang et al., 2015). Forward feature selection means that
the algorithm starts with an empty set of features and it-
eratively adds features to this subset. Conversely, starting
with the complete set of features and subtracting some at
every algorithm iteration is also possible. This process is
called backward selection. Besides, some strategies employ
both addition and subtraction of features simultaneously.
Those are called bi-directional. Finally, some algorithms
perform neither addition nor subtraction of attributes but act
by giving weights to all features simultaneously.
3.3. Predictive models

Predictive models or predictors are machine learning
algorithms that aim to predict outcomes or classify new data
samples concerning previously seen data. Here, we briefly
review some of the predictors and metrics we use to perform
feature selection in Subsection 3.7 and to evaluate prediction
results, described in Subsection 5.2.3.
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. Decision Tree
his is a straightforward model of a tree in which every
, in a top-down manner, represents a decision path
can be taken based on certain conditions (the values
sample attribute in prediction), and every leaf node
sents some label for which that path leads. As presented
oh (2011), tree generation algorithms recursively build
ree from top to bottom, generating splits (decisions) at
node based on an impurity function for attributes, thus
rating scores for the attributes it considers discriminant.
. Random Forest
andom Forest is an ensemble algorithm that leverages

oncept of the wisdom of the crowd to minimize the vari-
in results produced by single classifiers. The random
t concept was first introduced by Breiman (2001). It is
ed by a collection of decision trees trained on different
ets of instances by bootstrapping (random sampling
stances). For a single instance, the prediction process
rs for every tree in the forest, and then the predicted
is decided through a majority voting system.
. Naïve Bayes
aïve Bayes is a probabilistic classifier method based

ayes’ theorem under the "naïve" assumption that every
of features is independent. It is a straightforward and
ent approach. It relies solely on estimating the maxi-
likelihood for each feature and a priori probability for
class (Rish et al., 2001). Then, it selects the class that
r explains the instance being predicted, e.g., the one that
mizes the a posteriori probability for class 𝑦 for the
𝑥 instance, as defined in Equation 1.

𝑦𝑀𝐴𝑃 = argmax
𝑖

𝑃 (𝑦𝑖 ∣ 𝐱) (1)

. Least Absolute Shrinkage and Selection
Operator

his model, also known as Lasso, is a linear regression
od that uses 𝑙1-regularization to improve prediction
racy and reduce overfitting. Its formulation consists of
ng the formulation in Equation 2.

min
𝛽0,𝛽

{ 1
𝑁

‖‖𝑦 − 𝛽0 −𝑋𝛽‖‖22 + 𝜆‖𝛽‖1
}

(2)

re 𝑦 is the outcome, 𝑋 is the independent variables, 𝑁
e number of instances in the data, 𝛽 is the unknown

eters to be calculated, and 𝜆 is the regularization term.
. Support Vector Machine
upport vector machines (SVM) are a powerful and
ent class of regressors and classifiers. The method
tructs an n-dimensional hyper-plane or hyper-plane set
eparates the instances by class with the highest possible
in, maximizing the distance from the hyper-planes to
closest instances from each class (Cortes and Vapnik,
). It uses the hinge loss function to the soft-margin

approach (when data is not necessarily linearly separable)
and applies Thikonov regularization, also known as L2-
regularization. Computing the classifier is equivalent to min-
imizing the expression in Equation 3.

[
1
𝑛

𝑁∑
𝑖=1

max
(
0, 1 − 𝑦𝑖

(
�⃗� ⋅ �⃗�𝑖 − 𝑏

))]
+ 𝜆‖�⃗�‖2 (3)

Where �⃗� is the normal vector to the hyper-plane, 𝑏
�⃗� is the

plane offset to from origin along �⃗�, 𝑛 is the number of
instances in the data, 𝑥𝑖 is i-th instance in the data, and 𝑦𝑖 is
every 𝑥𝑖 class, which can be either 1 or -1, each representing
one class.
3.4. Classification Metrics

To analyze how good a selection of a feature selector
is, one of the measures that are considered in this work
is how good such selection is when used to train machine
learning models. This subsection describes some of the most
simple and popular approaches to evaluating some binary
predictor’s quality and, therefore, evaluating the relevance
of the selected feature subset regarding this predictor.
3.4.1. Accuracy

Sometimes addressed as Rand Index or Rand Accuracy,
prediction accuracy represents the percentage of correct
predictions within all predictions (Powers, 2020) and can be
calculated as shown in Equation 4.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(4)
Where 𝑇𝑃 is the count of true positives, 𝑇𝑁 is the count of
true negatives, 𝐹𝑃 is the count of false positives, and 𝐹𝑁
is the count of false negatives.

This metric can range from zero to one, where one means
all predictions are correct, and zero means the opposite.
Accuracy is effortless to calculate, though one of its main
drawbacks is that it falls short in terms of confidence when
the data is too unbalanced2.
3.4.2. F-measure

Precision is a metric that quantifies how many instances
predicted as positive are actually positive (Powers, 2020). It
can be calculated as follows in Equation 5.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(5)
Where 𝑇𝑃 is the count of true positives, and 𝐹𝑃 is the count
of false positives.

Recall, also known as sensitivity or true positive rate of
the model, is a metric that quantifies how much among the
actually positive samples were predicted as positive (Powers,
2020) and is given by Equation 6.

2An unbalanced dataset is a dataset in which the number of instances
of each class differs significantly.
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Analysis and Comparison of Feature Selection

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)
re 𝑇𝑃 is the count of true positives, and𝐹𝑁 is the count
lse negatives.
ecall and precision are relevance measures for machine
ing and statistical models. F-measure, also known as
re, is the harmonic mean between recall and precision
ers, 2020). It is defined in Equation 7.

𝐹𝑠𝑐𝑜𝑟𝑒 = (1 + 𝛽2) ⋅
precision ⋅ recall

(𝛽2 ⋅ precision) + recall
(7)

re 𝛽 is a parameter to regulate the weight of recall versus
sion.
ike accuracy, recall, and precision, the F-measure is
bounded between zero and one, one being the best

ible score and zero the worst. Both recall and precision
suffer from the same problem of being biased by un-
ced data; thus, the F-measure is affected, too. Also, it

sential to notice that the F-measure, even though it is a
l metric for measuring balanced data, does not consider

umber of true negatives. That is, it is also biased towards
ositive class.
Statistical Methods
his subsection introduces one-way analysis of variance
VA), its non-parametric version (Kruskal Wallis H
and how to address errors between continuous vari-

. The Kruskal Wallis H test will later be used as part
filter feature selection approach in Subsection 3.7.1.
ntrast, error analysis will be used in Subsection 6.4 to
are the error between stability estimators.
. ANOVA and Kruskal Wallis H test
he one-way analysis of variance is a class of statistical
ods that uses the concepts of variation among and
een groups (within a random variable and compared to
s, respectively) to compare whether a group of random
bles comes from the same distribution. ANOVA can be
rally defined as described in Equation 8.

𝐹 = 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

(8)

n this work, we utilize the Kruskal Wallis H test, which
e non-parametric equivalent of ANOVA. It does not

e that the data comes from a normal distribution. This
s defined in Equation 9.

𝐻 =

(
12

𝑛(𝑛 + 1)

𝑘∑
𝑗=1

𝑅2
𝑖

𝑛𝑖

)
− 3(𝑛 + 1) (9)

re 𝑘 is the number of compared groups, 𝑛 is the total
ber of samples, 𝑛𝑖 is the number of samples in the i-th

group, and 𝑅2
𝑖 is the sum of the values in the i-th group.

3.5.2. Error Analysis
One way to compare predictors and estimators is to

calculate how far their results are from each other. This can
be addressed by accounting for the total error between them.
Here is presented Mean Absolute Error, which will be used
further to analyze the stability results in Subsection 6.4.

Mean Absolute Error (MAE) is one of the most popular
ways to calculate the difference between two continuous
variables. It is a simple way to measure the error while
preserving its magnitude (Willmott and Matsuura, 2005).
The MAE between two continuous variables 𝑥 and 𝑦 is
defined by Equation 10.

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖| (10)

Where 𝑛 is the total number of instances, 𝑥𝑖 is the i-th value
in the variable 𝑥, and 𝑦𝑖 is the i-th value in variable 𝑦.
3.6. Information Theory

Information theory is a branch of applied informatics
that studies how information is stored, encoded, and trans-
mitted. This subsection describes Entropy, Mutual Informa-
tion, and Redundancy, which are core concepts for some of
the feature selectors tested further in this work.
3.6.1. Entropy

One of the fundamental matters of information theory is
called Entropy. Vergara and Estévez (2014) define Entropy
(H) as the measure of uncertainty that a random variable
holds towards the probability of an event’s occurrence. A
random variable’s entropy 𝐻(𝑥) is formulated in Equa-
tion 11.

𝐻(𝑥) = −
𝑛∑
𝑖=1

𝑃 (𝑥𝑖) log2(𝑃 (𝑥𝑖)) (11)

Where 𝑛 is the total number of instances, 𝑥 is a random
variable, 𝑥𝑖 is the i-th value in the variable 𝑥, and 𝑃 (𝑥𝑖) is
the probability of 𝑥𝑖 occurring.
3.6.2. Mutual Information

Derived from the concept of Entropy, Mutual Informa-
tion (MI) measures how much information one random vari-
able has concerning another variable (Vergara and Estévez,
2014). It is defined in Equation 12.

𝐼(𝑥; 𝑦) =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑃 (𝑥𝑖, 𝑦𝑗) ⋅ log
( 𝑃 (𝑥𝑖, 𝑦𝑗)
𝑃 (𝑥𝑖) ⋅ 𝑝(𝑦𝑗)

)
(12)

Where 𝑛 is the total number of instances, 𝑥 and 𝑦 are random
variables, 𝑥𝑖 and 𝑦𝑖 are the i-th value in the variable 𝑥
and 𝑦, respectively, 𝑃 (𝑥𝑖) and 𝑃 (𝑦𝑖) are the probabilities of
𝑥𝑖 and 𝑦𝑖 occurring, respectively, and 𝑃 (𝑥𝑖, 𝑦𝑖) is the joint
probability of 𝑥𝑖 and 𝑦𝑖 occurring.
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. Redundancy
he concept of redundancy of a variable 𝑓 regarding a
f other variables 𝑆 can be defined simply as the total
al information, described in Subsection 3.6.2, from that
ble to the set of attributes, as shown in Equation 13.

𝑅(𝑓, 𝑆) = 1
|𝑆|

∑
𝑥𝑖∈𝑆

𝐼
(
𝑓, 𝑥𝑖

) (13)

re 𝑓 is a random variable,𝑆 is a set of random variables,
the i-th value in the variable 𝑥, and 𝐼(𝑥, 𝑓 ) is the Mutual
mation between 𝑥 and 𝑓 .
Feature Selectors
hroughout this subsection, all the core methods of
re selection we have experimented with in this work and
of their properties are described. Table 1 shows how

algorithm relates to each property.
. Kruskal Wallis Filter

n the context of feature selection, we want to select
eatures that best discriminate the target class, so, for
feature, we calculate the score yielded by the Kruskal
is H test (described in Subsection 3.5.1) applied to the
re values grouped by class. Next, we select the features
higher test values (Grisci et al., 2019). As the test is
ed to every attribute alone regarding the target class,
method is univariate and thus does not consider any
ion or dependency between features. Also, as stated
e, it yields weighted results.
. Mutual Information Filter
ere, we utilize the concept described in Subsection 3.6.2

ranking filter approach. With mutual information, it is
ible to quantify a feature’s relevance based on how much
mation it holds concerning the target class. Therefore,
an rank the features according to the obtained relevance.
larly to the Kruskal Wallis filter, this method only looks
atures individually without considering dependency
g them and thus is a univariate approach. Mutual
mation yields weighted results.
. mRMR
ometimes, we want to identify how much a new vari-
can contribute by adding it to a set of other variables.
way to do this is by determining how relevant and non-
ndant the new variable is. The Minimum Redundancy
imum Relevance (mRMR), presented by Peng et al.
5), is a space search filter algorithm that selects, iter-
ly, the features that maximize mutual information (de-
ed in Subsection 3.6.2) to the target class and minimize
edundancy (described in Subsection 3.6.3) regarding
e features already in the selected subset. So, at every

tion, it aims to choose the feature 𝑥𝑗 that maximizes the
tion 14.

max
𝑥𝑗∈𝑋−𝑆

[
𝐼
(
𝑥𝑗 ; 𝑐

)
− 𝑅(𝑥𝑗 , 𝑆)

] (14)

Where 𝑋 is the set of all attributes, 𝑆 is the set of already
selected features, 𝐼 is the mutual information function, and𝑅
is the redundancy function. This work uses a fixed number of
𝐾-selected features as the algorithm’s stopping criteria. This
approach yields a weighted ranking of the 𝐾-best features.
3.7.4. ReliefF

ReliefF is a popular choice of algorithm for feature
selection. Its main strength is its core idea: for every instance
in the dataset, it looks for the k-neighbor instances of each
class. Then, it weights how much each attribute differs
between instances, thus being a lightweight algorithm that
takes into account feature-correlation (Robnik-Šikonja and
Kononenko, 2003).

The algorithm initiates a vector of weights that repre-
sents the quality of each feature. Then it selects an instance
and looks for the other k-nearest3 instances for each class.
The instances with the same class of the target instance
are called hits, and the instances with different classes are
called misses. The intuition is that if the target instance’s
value and a miss in a given attribute 𝐴 differs, 𝐴 is a good
feature to separate these classes, and thus its weight must be
increased. Similarly, if the target instance’s value and a hit
in the attribute 𝐴 differs, then 𝐴 is a good feature to separate
these classes, but it should not be because they have the same
class. Thus, the weight for feature 𝐴 must be decreased.

Misses are factored by their class’s occurrence in the
dataset, denoted as 𝑃 (𝑐), so all the misses can equal in
weight to hits. The pseudo-code for ReliefF is presented
in Algorithm 1. The return of this algorithm is a vector of
weights representing feature relevance.
3.7.5. SVM Recursive feature elimination

Recursive feature elimination is a wrapper approach
that recursively eliminates features from the subset of all
features based on some criteria. The procedure is described
in Algorithm 2. We utilize the SVM-RFE method (Guyon
et al., 2002). The criteria of feature removal are based on
selecting the feature with the SVM predictor’s lowest weight
(Subsection 3.3.5) internally to the features. This method is
multivariate since the SVM classifier considers all points and
is very stable since SVM’s optimization function is convex.
In other words, with enough time, it always converges to the
same result for given inputs. The return of the algorithm is a
ranked list of all features.

3k is a user-defined parameter.
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rithm 1 ReliefF Pseudo-code
ts : R: Set of all instances, C: Set of classes, k: Number

of neighbors
ut: W: Vector of feature weights
|𝑅|
𝑣𝑒𝑐𝑡𝑜𝑟_𝑜𝑓_𝑧𝑒𝑟𝑜𝑠(𝑠𝑖𝑧𝑒 = |𝑅1|)

= 1 to |𝑅| do
← 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_ℎ𝑖𝑡𝑠(𝑘,𝑅𝑖, 𝑅)

or 𝑐 in 𝐶∖𝑐𝑙𝑎𝑠𝑠
(
𝑅𝑖

) do
𝑀𝑐 ← 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑚𝑖𝑠𝑠𝑒𝑠(𝑐, 𝑘, 𝑅𝑖, 𝑅)

nd
or 𝑎 ← 1 to |𝐴| do

for ℎ𝑖𝑡 in 𝐻 do
𝑊 [𝑎] ← 𝑊 [𝑎] − 𝑑𝑖𝑓𝑓 (𝑅𝑖, ℎ𝑖𝑡)

𝑛∗𝑘
end
for 𝑐 in 𝐶∖𝑐𝑙𝑎𝑠𝑠 (𝑟) do

for 𝑚𝑖𝑠𝑠 in 𝑀𝑐 do
𝑑 ← 𝑃 (𝑐)

1−𝑃 (𝑐𝑙𝑎𝑠𝑠(𝑅𝑖)) ∗
𝑑𝑖𝑓𝑓 (𝑅𝑖, 𝑚𝑖𝑠𝑠)

𝑛∗𝑘
𝑊 [𝑎] ← 𝑊 [𝑎] + 𝑑

end
end

nd

n 𝑊

rithm 2 RFE Pseudo Code
t : S: The set of all attributes
ut: E: reverse ordered ranked list of features
𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡
← 1 to |𝑆| do
= 𝑠𝑒𝑙𝑒𝑐𝑡_𝑤𝑜𝑟𝑠𝑡_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑆)
← 𝑆 𝑟𝑒𝑚𝑜𝑣𝑒 𝑤
← 𝐸 𝑎𝑝𝑝𝑒𝑛𝑑 𝑤

n 𝐸

. Genetic Algorithm as SVM wrapper
enetic algorithms are a class of evolutionary algo-
s mainly used to solve optimization problems and
rm space search in a heuristic manner (Diaz-Gomez
ougen, 2007). The core concepts of genetic algorithms
otivated by natural selection over some generations

population of individuals. Its leading operators are the
tion of the fittest, mutation, and crossover.
n the context of wrapper feature selection, every indi-
al in the population is a candidate subset of features.
algorithm starts by first creating the initial population
dividuals. In our approach, we heuristically create the
population so that the size of the individual solutions
ls the number of features to select. Population size is
inimum necessary to have every feature in the input

at least once. Then, the algorithm iteratively creates a
generation of individuals until some stop criterion is
ed. At every iteration, the algorithm performs its three

primary operations. It selects the fittest individuals in the
population. Our strategy is that, given a fitness function, we
apply the roulette wheel algorithm so that every individual
can go to the next generation proportional to their fitness.
Higher scores yield a higher chance for them to survive. We
also make an elitist selection of the best 5% of individuals.
These individuals are directly copied to the next generation
without suffering crossover.

We perform the crossover operation over the selected
solutions two by two. Our definition of crossover is that for
every two random pairs of features formed from both par-
ents’ features, without replacement, there is a 50% chance,
exclusively, for this pair to be passed on to their offspring.
The mutation operator is applied to every individual in the
resulting population. Our approach is: for every feature of an
individual, there is a random chance of 0.1% for it to mutate
into another random feature from a set of all features minus
the selected ones. This work uses the genetic algorithm
presented above as a wrapper feature selector for the SVM
predictor (Subsection 3.3.5). This approach is inspired by
the work of Frohlich et al. (2003), but the parameters were
not explicitly tuned for each dataset; thus, results might not
be optimal. The fitness function is the F-measure (Subsec-
tion 3.4.2) obtained by training the SVM model in a 5-fold
cross-validation manner. Our stop criteria are either reaching
200 generations or a perfect classification score. The genetic
algorithm pseudo-code is shown in Algorithm 3.

Algorithm 3 GA Pseudo-code
Inputs : S: The set of all attributes, n_gen: Maximum

number of generations, max_fitness: Maximum
fitness threshold

Output: P: The last population to be generated
1 𝑃 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆)
2 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃 )
3 for 𝑖 ← 1 to 𝑛_𝑔𝑒𝑛 or 𝑚𝑎𝑥(𝑓𝑖𝑡𝑛𝑒𝑠𝑠) == 𝑚𝑎𝑥_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 do
4 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃 , 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠)
5 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑓𝑖𝑡𝑡𝑒𝑠𝑡)
6 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑚𝑢𝑡𝑎𝑡𝑒(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)
7 𝑒𝑙𝑖𝑡𝑒_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ← 𝑒𝑙𝑖𝑡𝑒(𝑃 )
8 𝑃 ← 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑒𝑙𝑖𝑡𝑒_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
9 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃 )

10 end
11 return 𝑃

3.7.7. Embedded feature selection
As mentioned in Subsection 3.1, some predictors can

perform feature selection at the same time they are trained.
In this work, we compare embedded feature selection on
Decision Tree (Subsection 3.3.1), Lasso (Subsection 3.3.4),
and SVM (Subsection 3.3.5) predictors.
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. Hybrid ReliefF filter with Genetic Algorithm
wrapper

his method is a hybrid approach that consists of com-
g two other methods already presented here: Reli-
(Subsection 3.7.4) and Genetic Algorithm (Subsec-
3.7.6). As stated by Shreem et al. (2012), combining
iques can create a feature selector that takes advantage
th eliminating noisy features by two different criteria
lso achieves good prediction power at lower computa-
l cost by applying a wrapper algorithm on a smaller set
atures. In our setup, we utilize ReliefF to filter the top

features for every used dataset, except for the XOR
et (Subsection 5.1.1) that contains fewer attributes.
, we select smaller subsets of features with the genetic
ithm.
. Random Forest feature selection
t last, we utilize the Random Forest (Subsection 3.3.2)

rform an ensemble feature selection. One of the biggest
gths of this method is that by utilizing an ensemble,
bility in results tends to fall (Ang et al., 2015). This
oach involves recombining the feature weights that ev-
ree in the random forest calculated in a single averaged
res weight vector so that features can be ranked.
Stability and Reliability

n machine learning, stability is a measure of how much
utputs tend not to change - that is, are stable - after
l perturbations in the data. Data perturbation is defined
anges in the training samples and can be simulated

ither adding new instances, removing some instances,
-sampling instances (Awada et al., 2012). Stability
an essential role in selecting an appropriate approach

ature selection because as stability increases, so does
onfidence of domain experts regarding the analysis
lected features. Stability is closely related to another
rtant concept called reliability. The main difference is
an algorithm is considered reliable if the outputs are
e for repeated applications to the same inputs without
rbation (Boutsidis and Magdon-Ismail, 2013).
ifferent estimators can be used to address and quantify

tability of a feature selection method. Mohana Chelvan
erumal (2016) present three categories of stability es-

tors segregated by the kind of results they can evaluate:
ility by Index/Subset, Stability by Rank, and Stability
eight. Nogueira et al. (2017) describe some desirable
erties for such estimators, such as being fully defined,
g maximum stability, defined bounds, correction by

ce, and monotonicity.
. Stability by Index/Subset
his kind of estimator can evaluate subsets of features. It

s solely on comparing similarity (the amount of overlap
een sets of selected features); sometimes, they need the
number of features before selection. One advantage of
methods is that most can calculate the stability for sets

fferent sizes. Also, as weighted vectors and rankings
e seen as subsets (explained in Subsection 3.2), these

metrics can evaluate a broader range of feature selectors’
results. Ahead, in Subsection 3.8.5, we introduce the Jaccard
Index, Hamming Distance, Percentage of overlap, Dice,
Ochiai Index, and Kuncheva Index, all metrics for subsets.
3.8.2. Stability by Rank

As its name implies, stability by rank is applied to data
that encodes a ranking of features. Data can be presented
as an ordered list, where features are ordered according to
their rank, or as a permutation list, where each position
represents a feature, and its value on the list is equal to
its respective position in the ranking. The latter format is
more suitable for these estimators, as ordered lists do not
store the position where an element is in the list. Most of
these methods cannot deal with pairs of rankings of different
sizes. In Subsection 3.8.5, the estimators Canberra Distance,
Kendall’s 𝜏, and Spearman’s 𝜌 are described.
3.8.3. Stability by Weight

This kind of estimator accounts for the weights of the
feature set in consideration to calculate stability. It is usually
defined by a measure of the correlation between the two
lists of weights. The main drawback of this approach is the
inability to deal with pairs of weight vectors of different
sizes. This is the most restricted group of estimators. It can
only evaluate feature selectors that yield feature weights or
scores as their result. Later in Subsection 3.8.5, Pearson
correlation, a stability by weight estimator, is explained.
3.8.4. Stability Properties

The main approaches of stability calculation used in this
work are described below. Table 2 shows which properties
each metric satisfies and the type of results they can evaluate.
Fully Defined

An estimator is considered fully defined if it is able to
deal with different sizes of selected subsets.
Monotonicity

This property states that the estimator should be a strict
function in terms of sample variance. In other words, the
larger the intersection ratio between the feature subsets, the
more significant the stability should be.
Defined Bounds

This property means that stability estimations must be
bounded by constants that depend neither on the overall
number of features nor the number of selected features.
Maximum Stability ↔ Deterministic Selection

This implies that an estimator should achieve the maxi-
mum stability score if and only if all compared subsets are
identical.
Correction for Chance

This property states that estimated stability should be
constant in expectation under the null model hypothesis for
any randomly selected subset from a set of features.

arbieri et al.: Preprint submitted to Elsevier Page 11 of 38



Journal Pre-proof

Table
Prop
colum

3.8.5
T

impl
work
their
Jacc

J
(Moh
betw
elem
preci
Equa

Norm
T

num
other
of th
by th
dista
Jacca
as Ja
zero
they
comm

Perc
T

lappi
For t
boun
mean
Alter
elem

MC B
Jo
ur

na
l P

re
-p

ro
of

Analysis and Comparison of Feature Selection

2
erties of stability measures. Original by Nogueira et al. (2017) and Khaire and Dhanalakshmi (2019). The ”result type“
n was complemented by the authors.

Metric
Fully

Defined Bounds Maximum
Correction
for Chance Monotonicity

Result
Type

Jaccard ✓ ✓ ✓ ✓ Subsets
Hamming ✓ ✓ ✓ ✓ Subsets
Dice ✓ ✓ ✓ ✓ Subsets
Ochiai ✓ ✓ ✓ ✓ Subsets
POG ✓ ✓ ✓ ✓ Subsets
Kuncheva ✓ ✓ ✓ ✓ Subsets
Canberra ✓ ✓ ✓ Rank
Spearman ✓ ✓ ✓ ✓ Rank
Pearson ✓ ✓ ✓ ✓ Weights

. Stability Metrics
his subsection presents some of the metrics studied and

emented during the development and execution of this
. Table 2 links the metrics described here to some of
properties.
ard Index
accard Index is a similarity measure between two sets
ana Chelvan and Perumal, 2016). Jaccard yields values

een zero and one. The value zero states no common
ent between the sets, while one says that both sets are
sely equal. For two sets, 𝐴 and 𝐵, it is defined by
tion 15.

𝐽 (𝐴,𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| (15)

alized Hamming Distance
he Hamming distance between two sets is equal to the

ber of replacements needed to change one set to the
(Mohana Chelvan and Perumal, 2016). It is the size

e symmetrical difference between sets 𝐴 and 𝐵 divided
e size of their intersection. The normalized Hamming
nce version for sets 𝐴 and 𝐵 is linearly inverse to
rd and can be calculated as defined in Equation 16. Just

ccard, results lay between zero and one, but in this case,
means there is no distance between the sets, that is,
are identical, and one means they have no element in
on.

𝑁𝐻𝐷 = |𝐴△ 𝐵|
|𝐴 ∪ 𝐵| (16)

entage of overlap
his metric calculates the normalized number of over-
ng attributes from one set to another (He and Yu, 2010).
wo sets, 𝐴 and 𝐵, it is calculated as in Equation 17. It is
ded between zero and one. The resulting value of one
s that both sets have 100% overlap and are identical.
natively, zero means no overlap, and both sets have no
ent in common.

𝑃𝑂𝐹 = |𝐴 ∩ 𝐵|
|𝐴| (17)

Sørensen-Dice
Sørensen-Dice, also known as Dice or f1-score metric,

quantifies the amount of overlap between two given sets.
It is similar to Jaccard, and it is even possible to calculate
Jaccard from Dice or vice versa. For two sets, 𝐴 and 𝐵, Dice
is defined as the harmonic mean of the overlap from 𝐴 to 𝐵
and from 𝐵 to 𝐴 (He and Yu, 2010). Its bounds are the same
as in the percentage of overlap and have the same meaning.
It can be calculated as in Equation 18.

𝐷𝑖𝑐𝑒 = 2 ∗ 𝐴 ∩ 𝐵
|𝐴| + |𝐵| (18)

Ochiai Index
Ochiai Index, a very similar metric to Jaccard and Dice,

also quantifies the overlap between two given sets (He and
Yu, 2010). It is also possible to calculate it from the Jaccard
Index score or vice versa. For two sets, 𝐴 and 𝐵, the Ochiai
index is defined as the geometric means of the overlap from
A to B and overlap from 𝐵 to 𝐴. Its bounds are the same as
in the percentage of overlap and have the same meaning. It
is calculated by Equation 19.

𝑂𝑐ℎ𝑖𝑎𝑖 = 2 ∗ 𝐴 ∩ 𝐵√|𝐴||𝐵|
(19)

Kuncheva Index
Kuncheva Index, also known as consistency index, is a

measure of similarity between two sets of selected attributes
(Kuncheva, 2007). Unlike the metrics for subsets presented
above, the consistency index satisfies the property of correc-
tion by chance. However, it can only be defined for subsets
with the same size as a trade-off. Kuncheva is bounded
between zero and one. The value zero means there is no
common element between the two sets, whereas one means
that the elements in both sets are equal. Its calculation can
be defined as in Equation 20.
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𝐼𝐶 (𝐴,𝐵) =
|𝐴 ∩ 𝐵|𝑛 − 𝑘2

𝑘(𝑛 − 𝑘)
(20)

re 𝑛 is the total number of features, and 𝑘 is the car-
ity of A and B. This equation is derived by applying
rrection factor of 𝑓𝑟𝑎𝑐𝑘2𝑛 on the amount of overlap
een two sets of size 𝑘. This factor is defined as the
cted size of the intersection between two randomly
n subsets of size 𝑘 from a subset of size 𝑛 without
cement.
berra distance
anberra distance is a measure of the distance between
ranked lists. It is defined as the sum of differences
een the two lists divided by the sum of their position
e rank (Jurman et al., 2009). Its values start at zero and
ase for every non-matching pair. For two given ranks,
𝑞 encoded as permutation lists, Canberra distance is

ed by Equation 21.

𝐷𝑐𝑎𝑛𝑏𝑒𝑟𝑟𝑎(𝑝, 𝑞) =
𝑛∑
𝑖=1

|𝑝𝑖 − 𝑞𝑖|
|𝑝𝑖| + |𝑞𝑖| (21)

re 𝑝𝑖 is the position of the feature i-th feature in rank
d 𝑞𝑖 is the position of the feature i-th feature in rank

he main advantage of this metric is that it attributes
er values for differences at the top of the ranking. When
d 𝑞𝑖 are smaller, the feature in consideration is highly
d. Hence, the ranking difference is divided by their
yielding higher values for more important features than
ranked at the bottom of the ranking.

son correlation coefficient
earson correlation measures the linear correlation be-
n two random variables. It is used to evaluate algorithm
ts that yield weighted feature subsets. It results in values
een -1 and 1, with 1 indicating that both variables are
rly correlated and -1 meaning that they are linearly
se correlated. Zero means that there is no correlation at
earson correlation coefficient is defined in Equation 22.

𝑟𝑥𝑦 =
∑𝑛

𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)√∑𝑛
𝑖=1(𝑥𝑖 − �̄�)2

√∑𝑛
𝑖=1(𝑦𝑖 − �̄�)2

(22)

re 𝑥 and 𝑦 are a random variables, 𝑥𝑖 and 𝑦𝑖 are the i-th
s in the variables 𝑥 and 𝑦, respectively, 𝑛 is the number
lues in 𝑥 and 𝑦, and �̄� and �̄� are, respectively, the mean
of variables 𝑥 and 𝑦. The dividend of Equation 22 is the

riance between variables 𝑥 and 𝑦, whereas the quotient
e standard deviation of 𝑥 multiplied by the standard
tion of 𝑦.
rman’s 𝜌
pearman’s rank correlation coefficient or Spearman’s 𝜌
easure of the correlation between two given random

variables. Spearman’s 𝜌 between two ranks equals Pearson’s
correlation between the rank values of the two ranks, and
thus, it has the same boundaries as Pearson’s correlation. In
the case where there are no ties in the ranking, Kalousis et al.
(2007) define its formula as follows in Equation 23.

𝑟𝑠(𝑝, 𝑞) = 1 −
6
∑𝑛

𝑖=1(𝑝𝑖 − 𝑞𝑖)2

𝑛(𝑛2 − 1)
(23)

Where 𝑝 and 𝑞 are two rankings presented as permutation
lists and 𝑛 is the number of elements in the rankings.
3.9. Visualization

In this work, to better understand how much a subset
of features is able to differentiate classes in a dataset, we
utilize t-SNE (Maaten and Hinton, 2008; Grisci et al., 2021).
The name t-SNE stands for t-distributed Stochastic Neighbor
Embedding. It is a dimensionality-reduction feature extrac-
tion technique that projects a high-dimensional space into a
faithful lower-dimensional space so that it can be visualized.

The intuition of t-SNE is that given the conditional
probability of an instance being the neighbor to another in a
high-dimensional space, for all instances, a space with fewer
dimensions should be a good representation of this high-
dimensional space if instances have a similar conditional
probability of being neighbor to one another to the condi-
tional probability the instances in the higher-dimensional
space have. This algorithm’s details go beyond this work’s
scope; more information about it can be found in Maaten and
Hinton (2008).

4. Framework
This section presents an overview of the proposed com-

putational framework supporting the experimentation con-
ducted in this work. The following subsections describe the
framework’s architecture created to run and evaluate the
feature selection algorithms, its execution flow, its main
components, and the technologies used to build it. The
complete code and data developed for this implementa-
tion can be accessed in the following repository and can
be used for experiments or as a basis for other projects:
https://github.com/sbcblab/GenExpFS.
4.1. Architecture

We create a software architecture based on workers to
run and evaluate the algorithms in a fair computational
environment. A manager process is responsible for spawning
workers and distributing tasks to them. Every worker is
spawned in a different process and attributed to one CPU
core, so every task runs in a single-core process during its
life cycle. All results generated during execution are saved
to CSV files. Figure 2 shows the proposed architecture.
4.2. Execution flow

All the processing development is executed in a few
operations. The steps are described below:
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igure 2: The pipeline architecture is built to perform feature selection and execute feature selection results evaluation.

Load execution definitions: First of all, our frame-
work loads a set of configurations that describes which
algorithms should be run, if they should be sampled
or not, what their parameters will be, and for which
datasets they will execute.
Load data into memory: In this step, all available
datasets are loaded, preprocessed, and stored in a read-
only shared memory.
Spawn worker processes: Here, we spawn several
worker processes equivalent to the number of avail-
able CPU cores. Every worker is born with access to
the shared memory and is ready to receive selection
and evaluation tasks.
Create feature selection tasks: From the task defini-
tions loaded before, algorithms presented in Subsec-
tion 3.7 and datasets described in Subsection 5.1, the
manager process combines all the defined parameters
to generate a list of the feature selection tasks that
should be run.
Run feature selection algorithms on workers: Itera-
tively, all the tasks are sent to workers as soon as they
are available to process them. Results are saved.
Run predictors: After the results of feature selec-
tions are ready, several prediction tasks, described in

Subsection 5.2.3, are deployed to workers. Results are
then saved.

7. Run stability evaluation: In this step, we first select
the feature selection results that suffered data per-
turbation. Subsequently, we group the filtered results
by their parameters. Groups are then distributed to
one worker each. For all groups of results, stability
measures are taken (presented in Subsection 5.2.4).
Then, stability results are saved both in complete and
summarized fashions.

8. Run reliability evaluation: Here, reliability is eval-
uated similarly to stability, as described in Subsec-
tion 5.2.5. Reliability results are also saved in com-
plete and summarized forms.

9. Aggregate times: Finally, all the execution times for
the algorithms are averaged, summarized, and saved.

4.3. Components
We have developed a few core components and helpers

to make experimentation fast and easy. First, the project
contains a helper tool to generate and download all necessary
datasets used in this work. In addition, the project includes
some base feature selection models. Moreover, some com-
ponents are responsible for loading all the configuration
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"description": "GA on CuMiDa data with

perturbations",

"datasets": [

"Liver_GSE22405",

"Prostate_GSE6919_U95C"

],

"algorithms": [

{

"name": "SVMGeneticAlgorithm",

"params": [[50], [100], [200]],

"runs": 0,

"sample_runs": 10

}

]

,

"description": "SVM vs SVM -RFE on XOR

Dataset",

"datasets": [

"XOR"

],

"algorithms": [

{

"name": "LinearSVM",

"params": [[50]],

"runs": 5,

"sample_runs": 0

},

{

"name": "SVMRFE",

"params": [[50]],

"runs": 5,

"sample_runs": 0

}

]

e 3: Example snippet of a configuration file for task
ion on the proposed framework.

ata needed for algorithms to perform feature selection.
des, modules to achieve scoring, stability, reliability,
xecution time are provided. Lastly, a pipeline structure
ecute feature selection tasks is presented.
Base models
oncerning standardization and easier use of the fea-

selection models, some base models were created. The
el from which all other models derive is the BaseSelec-
The base models are described below:

BaseSelector: The base model class from which all
others derive. It contains the base functionalities that
feature selectors need to be run on this framework. To
add new algorithms to the framework, this class must
be extended. It is used to implement all algorithms
listed in Subsection 3.7.
BaseEmbeddedFeatureSelector: A class that wraps
models that can yield weight results. It fits and ex-
tracts the model’s respective weights to create feature
ranking. Class used in the implementation of Decision

Tree, Lasso, LinearSVM and Random Forest embed-
ded feature selection (Subsection 3.7.7 and Subsec-
tion 3.7.9).

3. GeneticAlgorithmFeatureSelector: A wrapper fea-
ture selector that accepts a fitness function and uses it
to perform feature selection with a Genetic Algorithm.
This model is used in the implementation of SVM-GA
(Subsection 3.7.6).

4. KBestFeatureSelector: A model class used to per-
form ranking filter feature selection approaches. It
accepts a weighting function, which is applied to all
the features-target-class pairs. This class was used to
implement KW Filter and MI Filter feature selectors
(Subsection 3.7.1 and Subsection 3.7.2).

5. FeatureSelectorPipeline: A wrapper class that chains
models into a single feature selection procedure. They
are used to implement hybrid feature selection ap-
proaches, such as ReliefF-GA (Subsection 3.7.8).

6. RFE: Wrapper feature selection model that wraps a
single model and performs Recursive Feature Elimi-
nation with it. It was used to implement the SVM-RFE
feature selector (Subsection 3.7.5).

4.5. Datasets and Dataloader
To gather the data needed for experimentation, scripts

are disposed to generate the synthetic data and download
the datasets used in this work (presented in Subsection 5.1).
The class DataLoader provides the functionalities to load
from memory and preprocess the data. Also, a class named
SharedDatasets was created to aid the datasets’ utilization
in a parallel environment. This class aims to encode all
the datasets into a shared memory region and hold their
representation so that they can be accessed by any worker
running different processes.
4.6. Tasks and Presets

Every feature selection is encoded within a Task model.
There is the TaskLoader component to facilitate task cre-
ation. It can load configuration from JSON files, where it is
possible to specify parameters to generate Tasks. These files
were called Presets. The parameters a preset may contain
are a list of datasets to be used, the feature selectors that
will be run for each dataset, their respective parametrization,
sampling strategies to use, and how many runs will be
executed, with and without sampling. The snippet in Figure 3
displays an example of the preset file.
4.7. Feature Selection Evaluators

Lastly, the project contains a module called evaluation.
This module provides all the classes needed to take the
measurements we will soon describe in Subsection 5.2.
Three main classes are used to assess the evaluation:

• ResultsScorer: The class responsible for running pre-
diction tasks on the resulting selections and retrieving
their respective scores.
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ResultsStability: The component that applies stabil-
ity and reliability metrics over all feature selection
results.
ExecutionTimesAggregator: The component that
takes the feature selections execution times, splits
them by every combination of feature selector and data
and finally takes the average.

Technologies and Implementation
he framework application was implemented in the lan-
e Python 3.6. All predictors, prediction scorers, dataset
ration tools, mutual-information, and nearest-neighbors
lations in this work were used, as is, from Scikit-learn4

ry (Pedregosa et al., 2011). In addition, the Scipy5 and
py6 libraries (Virtanen et al., 2020; Harris et al., 2020)
employed for general data manipulation, the develop-
of some of the algorithms, and stability metrics.
oreover, the Pandas7 library (Wes McKinney, 2010)

used to read comma-separated values data to aggregate
ation results and general results analysis throughout the

lopment of this work. Finally, all tasks were run on 2x
Xeon E5-2650V4, totaling 48 virtual cores with a base
ency of 2.2Ghz, 128 GB of RAM, and Ubuntu 18.04.5
operating system.

ethodology
ecapping what was discussed in Section 1, feature
tion is one of the main techniques used to deal with
roblems that come along with high dimensional data.
work aims to generate a comparative analysis of the
feature selection procedures in different domains and
ectives. This section presents the methodology and

riments conducted to achieve this goal. First, all the
ets upon which the algorithms performed feature selec-

are described. Then, our experimental setup is detailed,
ll the measures taken are outlined.
Datasets
roblems concerning a high number of features, a small

ber of samples, and noisy or redundant data are present
veral domains. To address these situations, we selected
ets with unique properties that can be used to assess
re selection regarding these problems. We also synthe-
some datasets to evaluate some specific characteristics

ature selectors, such as selection accuracy or the ability
lectors to deal with the correlation between features.
atasets presented here have two classes and have a
ced number of classes to shorten this work’s scope.
e constraints are arranged so that fewer variables are
duced in the analysis of the results.
n Subsection 5.1.1, the synthetic XOR dataset is de-
ed. Then, in Subsection 5.1.2, the creation of synthetic
https://scikit-learn.org/

https://www.scipy.org/

https://numpy.org/

https://pandas.pydata.org

(a) All features

(b) Informative features
Figure 4: t-SNE of features in XOR dataset (a) before feature
selection and (b) after feature selection. Each color corresponds
to a class. As can be seen, the difference between the two
figures can help the user decide if the selected features can
represent the classes or not.

data to simulate redundancy is presented. Subsequently, in
Subsection 5.1.3, we describe the CuMiDa database. Table 3
and 4 present more specific details about the data.
5.1.1. Synthetic XOR Binary Dataset

The XOR dataset is a binary composition of 500 samples
and 50 features. Two of these features characterize the XOR
logical operator8 (Tan et al., 2009; Grisci et al., 2021) and,
therefore, are informative to the target class. All the other
48 attributes are fully randomized binary values (noisy fea-
tures). An example of an XOR dataset in which the attribute
class is the result of the XOR operation between attributes
Informative 1 and Informative 2. Figure 4 is a 2-dimensional
projection of all the features versus only the informative
features. The main objective of utilizing such a dataset
is to observe which evaluated algorithms can deal with a
strong non-linear correlation between the two informative
attributes.

8The XOR logical operator is a function that receives two binary values
and returns 0/False if they are equal or 1/True if they are different.
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3
sets quantities

Dataset
Number of
samples

Number of
Features

Informative
Features

Redundant
Features

Number of
Classes

XOR 500 50 2 0 2
Synth_A 100 5000 50 0 2
Synth_B 100 5000 50 50 2

Liver 48 22284 unknown unknown 2
Prostate 115 12647 unknown unknown 2

4
sets’ properties

Dataset Source
Feature
Type Class Type Missing

Data
Balanced
Classes

XOR Synthetic Binary Binary ✗ ✓

Synth_A Synthetic Numerical Binary ✗ ✓

Synth_B Synthetic Numerical Binary ✗ ✓

Liver CuMiDa Numerical Categorical ✗ ✓

Prostate CuMiDa Numerical Categorical ✗ ✗

. Synthetic Data With Redundancy
o evaluate how some algorithms might deal with redun-
y, we created two datasets utilizing the dataset creation
from the Scikit-Learn library (Pedregosa et al., 2011).

tool first creates an 𝑛-dimensional hypercube, where 𝑛
ual to the number of informative features the dataset
ld have. Then, it creates Gaussian clusters9 of data-
ts10 for each vertex in the hyper-cube. Furthermore,
ual amount of clusters is assigned to each class. The

mative features are the ones that are coordinates for the
ed points in the hypercube.
he first dataset, Synth_A, was created with 100 samples,
y target classes, and 5000 numerical features, from
h 50 are informative (directly correlated to the target
). The second dataset, Synth_B, was also created with
samples, binary target classes, and 5000 numerical
res, from which 50 are informative, but there are also
her redundant features. The redundant features are ran-
ly generated linear combinations of the 50 informative
. Both datasets are normalized between 0 and 1. Figure 5
s a 2-dimensional projection of all features versus the
ction of the 50 informative features in the Synth_A
et. Figure 6 shows the same projection but for the
_B dataset.
. CuMiDa
uMiDa stands for Curated Microarray Database. It
rises extensively treated microarrays specifically cu-
for testing and benchmarking machine learning meth-

in cancer research, thus being ideally suited for our
riments (Feltes et al., 2019). All the data (78 datasets)
examined and handpicked from a sample of more than
Gaussian clusters are points of data sampled from a normal distribu-

ith mean value equal to the center of the cluster.
Total number of data-points is equal to the number of samples.

30, 000 databases. It was submitted to background correc-
tion, normalization, and filtered after some sample quality
analysis (Feltes et al., 2019). Besides, CuMiDa also provides
baseline accuracy from experimentation with some popular
machine learning techniques. Because of their high dimen-
sionality and relevance in medical applications, microarray
datasets are often used in experiments in feature selection
research (Grisci et al., 2018, 2019). However, between 2010
and 2020, 57% of the publications about feature selection
that had experiments using gene expression data used at
least one outdated dataset, 23% used only outdated data,
and 32% did not adequately cited the source of the data
(Grisci et al., 2023). The use of inadequate or outdated gene
expression datasets is a common problem in feature selection
publications, and adopting CuMiDa is a way to prevent this
issue (Grisci et al., 2023).

In this work, we utilize two datasets from CuMiDa:
Liver-GSE22405 and Prostate-GSE6919-U95C. Both have
numerical values for predictor features, binary categorical
values for outcome classes, and both datasets are fully de-
fined. There is no missing value in any variable. Liver-
GSE22405 dataset contains 48 samples with 22, 284 fea-
tures, while Prostate-GSE6919-U95C has 115 samples and
12, 647 features, thus being good candidates to evaluate
how algorithms deal with the curse of dimensionality and
the small sample problem. Figure 7 presents the t-SNE 2-
dimensional projection of all features from both datasets. For
simplicity, we may refer to these datasets only by Liver and
Prostate datasets.
5.2. Experiments

Feature selection algorithms can be employed in vir-
tually any machine learning task that relies on a dataset
to perform classification or regression and can be used in
a wide range of applications. However, every application
has its own needs and criteria, e.g., medical applications
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(a) All features

(b) Informative features
e 5: t-SNE of features in Synth_A dataset (a) before
re selection and (b) after feature selection. Details as in
e 4.

ally prioritize high recall and specificity. Simultane-
, recommender systems usually hang to the side of fast

ution times in the trade-off between time complexity and
iction scores, and, finally, biomedical applications seek
accuracy and stability.
e execute various setups to better address and under-
where each feature selector best fits. Different datasets
employed, each with unique characteristics to assess
ct properties. Also, various sampling techniques to pro-
perturbations were applied to evaluate the robustness

ature selectors. Moreover, all the dataset combinations,
ling mode, feature selector, and input parameters are

uted 31 times to generate statistically relevant results.
e executions of these combinations totaled 8,835 initial

re selection tasks. Table 5 displays the parameterization
for each executed algorithm. The value auto in the table
s that the parameter’s value was automatically defined
me heuristic. In all procedures executing Lasso, the

larization term 𝜆 was set to 0.001, which is still high
gh for the model to penalize 99% of the features to
ht zero in bigger datasets.

(a) All features

(b) Informative features
Figure 6: t-SNE of features in Synth_B dataset (a) before
feature selection and (b) after feature selection. Details as in
Figure 4.

Each result of feature selection that is weighted or ranked
is taken advantage of by the order’s assumption to generate
more efficient tests. Smaller subsets from the original selec-
tion are reevaluated whenever possible. This scheme cannot
be used for algorithms in which the results are unordered
subsets. In this case, several tasks with different parameters
of the number of selected features were executed. Table 6
presents the size of the subsets evaluated for each dataset.
This approach totaled 25,575 data points of resulting feature
selections that were further submitted to necessary transfor-
mation and aggregation. The following subsections describe
the evaluation criteria and measurements we apply to the
obtained subsets of features.
5.2.1. Selection Accuracy

To evaluate how good a feature selector is at selecting
relevant features, we analyze feature selection on two syn-
thetic datasets: XOR and Synth_A (Subsection 5.1.1 and
Subsection 5.1.2, respectively). The premise in evaluating
these datasets is that one knows precisely which features
are relevant. Then, for all the feature selection approaches
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5
re Selection Algorithms Parametrization per Dataset

Algorithms Parameters
Datasets

XOR Synth_A;
Synth_B Prostate Liver

KW Filter;
MI Filter

Selected
Features 50 5000 12647 22284

mRMR Selected
Features 50 100 200 200

ReliefF

Selected
Features 100 5000 12647 22284

Number of
Neighbours 100 100 100 100

Lasso
Selected
Features 50 5000 12647 22284

Alpha 0.001 0.001 0.001 0.001

Decision
Tree

Selected
Features 50 5000 12647 22284

Criteria Gini Gini Gini Gini

Random
Forest

Selected
Features 50 5000 12647 22284

Criteria Gini Gini Gini Gini

Number of
Estimators 100 100 100 100

SVM;
SVM-RFE

Selected
Features 50 5000 12647 22284

Max
Iterations 1000 1000 1000 1000

SVM-GA;
ReliefF-GA

Selected
Features 5; 10; 20 10; 20;

50; 100
10; 20; 50;
100; 200

10; 20; 50;
100; 200

Population
Size auto auto auto auto

Number of
Generations 100 100 100 100

% Elite 0.05 0.05 0.05 0.05

% Crossover 0.5 0.5 0.5 0.5

% Mutation 0.001 0.001 0.001 0.001

Max Fitness 1 1 1 1

Fitness
Function

5-fold
SVM
F-measure

5-fold
SVM
F-measure

5-fold
SVM
F-measure

5-fold
SVM
F-measure

6
ated feature subset sizes for each dataset.

Dataset Evaluated subset sizes
XOR 5; 10; 20
Synth_A 5; 10; 20; 50; 100
Synth_B 5; 10; 20; 50; 100
Liver 5; 10; 20; 50; 100, 200
Prostate 5; 10; 20; 50; 100, 200

nted in this work, we calculate two measures: the per-
ge of informative features among the selected features
he percentage of the selected features that are, in fact,
mative. The results for selection accuracy are later
nted and discussed in Subsection 6.1.

Percentage of Informative Features Selected
To better understand the proportion of the informative

features being taken into account by the feature selectors, we
introduce the Percentage of Informative Features Selected
(PIFS) metric. The calculation for this metric is defined in
Equation 24.

𝑃𝐼𝐹𝑆 =
|𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒|

|𝑆𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒| (24)

Where𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is the set of selected features, and𝑆𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒is the set of informative features for a given dataset.
Percentage of Selected Features that are Informative

We also want to examine the amount of informative-
ness feature selectors obtain in the selected subsets. To
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(a) Prostate-GSE6919-U95C

(b) Liver-GSE22405
Figure 7: t-SNE of features in CuMiDa datasets

tify the informativeness within subsets, we introduce
ercentage of Selected Features that are Informative
I) metric. This percentage is calculated by the formula
uation 25.

𝑃𝑆𝐹𝐼 =
|𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒|

|𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑| (25)

re𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is the set of selected features, and𝑆𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒set of informative features for a given dataset.
. Redundancy
ne of the main goals of feature selection is to filter and

ce the volume of information retrieved from the original
while keeping only the vital information. As described
bsection 3.7, some feature selection approaches try to
s this issue by minimizing redundancy within results.
usually try this by calculating the amount of redundant

mation between features or adding penalizing factors
eir objective function. To evaluate how prominently
re selectors can deal with redundancy, we measure,
ach selected subset, the amount of information every

selected feature has to all the others (described in Subsec-
tion 3.6.3) and then take their average value. Results ob-
tained for redundancy are detailed ahead in Subsection 6.2.
5.2.3. Prediction Scores

We employed several predictor models to evaluate a fea-
ture subset’s prediction power, described in Subsection 3.3:
Decision Trees, Random Forest, Naïve Bayes, and SVM.
For each result and predictor, we execute 5-fold stratified
cross-validation and retrieve their respective accuracy and
F-measure as defined in Subsection 3.4. The results are
further described in Subsection 6.3.
5.2.4. Stability

As stated in Subsection 3.8, high stability is an essential
property for feature selectors to have. To evaluate stability,
we utilize two approaches to promote perturbation at every
execution:

1. Bootstraps: the data is re-sampled with reposition
(Efron, 1992). On average, this strategy keeps 63.2%
of the original samples, repeating some of the samples
and, thus, adding a significant amount of perturba-
tion.

2. Sample Subsets: 90% of the instances are sampled
with reposition (Awada et al., 2012). This approach
generates data with small amounts of perturbation.

After executing the algorithms with the sampled data,
the stability metrics described in Subsection 3.8.5 are ap-
plied. Data is then grouped by their sampling type, algo-
rithm, dataset, and the number of selected features. For each
group’s pair-wise combinations of results, the stability met-
rics described in Subsection 3.8.5 are taken and averaged,
as shown in Equation 26. Because some of the datasets have
an enormous amount of features and the majority of feature
selectors would not rank nor weight more than 1% of the
existing attributes, we normalize Spearman’s 𝜌 and Pearson
correlation metrics to consider only the features that were
ranked or weighted in the calculation. This normalization
was done to obtain more relevant and comparable results,
later presented in Subsection 6.4.

𝐴𝑣𝑔𝑚𝑒𝑡𝑟𝑖𝑐(𝑆) =
2

|𝑆| ∗ (|𝑆| − 1)

|𝑆|−1∑
𝑖=1

|𝑆|∑
𝑗=𝑖+1

𝑚𝑒𝑡𝑟𝑖𝑐(𝑆𝑖, 𝑆𝑗)

(26)
Where 𝑆 is a subset of feature selection results.
5.2.5. Reliability

Boutsidis and Magdon-Ismail (2013) say that being de-
terministic is desirable because stochastic approaches can
yield different results for every execution, thus decreasing
expert confidence. To assess this, we also apply the same
strategy presented in Subsection 5.2.4 to evaluate the al-
gorithms’ reliability concerning their results. However, the
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ics are applied to results not submitted to any pertur-
n. Results obtained are later presented at the end of
ection 6.4.
. Execution Time
ifferent algorithms have different time complexities
ake different amounts of time to perform feature selec-
tasks. In this work, we executed every algorithm in a
e-threaded process fashion and retrieved their averaged
ution times. The results for the execution times are
er displayed in Subsection 6.5.

esults and Discussion
his section presents the results of the experiments that
conducted. The accuracy of the algorithms in se-
g relevant features is shown. Afterward, the results
ding redundancy among the selected feature subsets are
nted. Subsequently, the results obtained by submitting
re selections to predictors are reported. Then, an anal-
of the stability and reliability of the feature selection
ts is shown. Finally, the results of the feature selectors’
ution time are described.
Selection Accuracy
his section describes the results of selection accuracy
ation for both Synth_A and XOR datasets. The out-
s presented here are the average of 31 executions for
parameter setting combination with datasets without
rbation. Full results are available in Supplementary
rial.
. Results for XOR dataset

n Figure 8, the results obtained for the XOR dataset are
n. The percentage of informative features that the algo-
s selected to specific quantities of selected features is
nted in Figure 8a, and the rate of those selected features
re, in fact, informative is displayed in Figure 8b.

t is possible to see that both ReliefF and Random Forest
tors achieve perfect scoring, as they always selected
wo informative features from the XOR dataset in our
riments. In contrast, filtering with Kruskal Wallis leads

worst results. It never selected relevant features. These
ts are probably because both ReliefF and Random For-
e very sensitive to feature interactions11, while Kruskal
is is univariate, and thus, it does not deal with corre-
n between features. ReliefF-GA and SVM-GA feature
tors also retrieved good average results. Due to their
stochastic nature, they could, most of the time, select

2 of the relevant features for XOR. Also, SVM-RFE and
o performed almost identically. They did not select any
ant features in subsets of sizes 5 and 10 and, on average,
ted only one of the relevant features for subsets of size

The Random Forest model has high sensitivity when the correlation
en features is non-linear, which is the case in the XOR dataset. Still,
ht not yield satisfactory results on a perfectly linear setup.

6.1.2. Results for Synth_A dataset
Similarly to results for the XOR dataset, Figure 9a shows

the percentage of informative features and Figure 9b, on the
right, shows the percentage of which of those features are in-
formative. However, contrary to the XOR results, the Kruskal
Wallis Filter algorithm shows one of the best overall selec-
tion accuracies for the Synth_A dataset, being just behind
ReliefF in terms of scores. Notably, for this dataset, Mutual
information Filter, mRMR, SVM-RFE, Decision Tree, and
Lasso had no feature selections with informative features for
subsets of sizes 5 and 10.

Lastly, the overall selection accuracy implies that all
tested algorithms, except for ReliefF and Kruskal Wallis
Filter, on average, could select only from 0 to 2 relevant
features. Therefore, Synth_A dataset must impose a hard
challenge on feature selection tasks.
6.2. Selection Redundancy

This subsection presents the results obtained by evalu-
ating how feature selectors deal with redundancy. All re-
sults were generated from feature selections of the Synth_B
dataset (Subsection 5.1.2) without any form of perturbation.
Table 7 shows the redundancy scores obtained by averaging
the redundancy between each result’s selected features for
31 executions of every algorithm. The overall redundancy
does not appear to vary much between algorithms. However,
it is possible to see that mRMR is the one that minimizes
redundancy the most. This was expected because mRMR
incorporates the redundancy in its minimization function.
6.3. Prediction Score

The average prediction scores obtained are presented
from 31 executions for each dataset, feature selector, and
subset size. It is shown that for every dataset, the prediction
results by utilizing the Decision Tree, Naïve Bayes, SVM,
and Random Forest predictors. As for the metrics, F-measure
and accuracy are taken. However, accuracy is omitted for the
sake of visibility. Because datasets are very balanced, the
accuracy metric yields results similar to the F-measure.
6.3.1. Results for XOR dataset

Figure 10 shows the averaged F-measure for the four
predictors used. In general, both ReliefF and Random Forest
feature Selectors have the best results, achieving perfect
scores when evaluated by the Decision Trees predictor with
five features, and for SVM and Random Forest, they achieve
perfect scores at subset sizes 5 and 10.

The Naïve Bayes classifier (Figure 10b) is not an at-
tractive candidate to evaluate the XOR dataset because it
only accounts for the probability of each feature to explain
the data independently. Thus, it does not consider feature
correlation. Besides, Naïve Bayes always tries to use all
features, including the noisy ones, to explain the result being
classified, therefore degrading results in this case.

As stated in Subsection 6.1.1, both ReliefF-GA and SVM-
GA feature selectors are often able to retrieve relevant fea-
tures, thus having an above the average prediction score.
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(a) Percentage of informative features that were selected. (b) Percentage of selected features that are informative
Figure 8: Results of selection accuracy for XOR (average of 31 executions). Higher scores are better.

(a) Percentage of informative features that were selected (b) Percentage of selected features that are informative
Figure 9: Results of selection accuracy for Synth_A (average of 31 executions). Higher scores are better.

lly, none of the remaining feature selectors can handle
OR dataset well, achieving accuracy values near 0.5.
. Results for Synth_A dataset
s shown before, the Synth_A dataset provides a difficult

enge for feature selectors in selecting relevant features.
re 11 shows the averaged F-measure for the four predic-
sed. When accounting for 20 or more selected features,

-RFE seems to have the best prediction scores for Naïve
s, SVM, and Random Forest predictors (Figure 11b,
and 11d, respectively), while the Decision Tree feature
tor provides the worst results. KW Filter, Linear SVM,
F, SVM-GA, and Lasso achieve decent overall results

with these three predictors. While the first three seem to
improve in prediction score in terms of the number of
selected features, the latter two appear to reach their best
results when 50 features are selected.

However, when looking at the results utilizing Decision
Tree as the predictor (Figure 11b), the best scoring algorithm
is Decision Tree as the feature selector. Besides, SVM-RFE
results for SVM predictor yields some of the best results.
These results show that both Decision Tree embedded and
SVM wrapper feature selections might have over-fitted for
this dataset.
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7
ge redundancy scores for Synth_B dataset (with standard deviation). The best scores obtained for each subset size by
re selector are in displayed in bold.

Feature
Selector

Number of Selected Features

5 10 20 50 100

Lasso
0.0521

±2.45 × 10−5
0.0313

±2.59 × 10−5
0.0249

±8.56 × 10−6
0.0255

±1.74 × 10−6
0.0258

±9.27 × 10−7

ReliefF
0.0468
±0.00

0.0356
±0.00

0.0367
±8.44 × 10−6

0.0299
±2.48 × 10−6

0.0276
±9.74 × 10−7

KW Filter
0.0330

±3.58 × 10−5
0.0313

±2.13 × 10−5
0.0296

±6.84 × 10−6
0.0286

±2.61 × 10−6
0.0267

±1.11 × 10−6

LinearSVM
0.0322

±1.83 × 10−5
0.0326

±1.40 × 10−5
0.0258

±5.85 × 10−6
0.0265

±3.89 × 10−6
0.0267

±1.96 × 10−6

Random Forest
0.0295

±1.45 × 10−2
0.0276

±6.80 × 10−3
0.0260

±2.13 × 10−3
0.0260

±1.17 × 10−3
0.0259

±3.91 × 10−4

SVM-GA
0.0290

±1.36 × 10−2
0.0263

±5.86 × 10−3
0.0265

±2.85 × 10−3
0.0260

±1.04 × 10−3
0.0257

±5.35 × 10−4

MI Filter
0.0250

±3.47 × 10−5
0.0267

±1.51 × 10−3
0.0257

±9.90 × 10−6
0.0273

±2.76 × 10−6
0.0268

±1.50 × 10−6

ReliefF-GA
0.0218

±1.27 × 10−2
0.0250

±5.19 × 10−3
0.0261

±3.21 × 10−3
0.0261

±1.21 × 10−3
0.0261

±6.75 × 10−4

Decision Tree
0.0159

±1.65 × 10−5
0.0260

±4.10 × 10−3
0.0260

±1.40 × 10−3
0.0251

±8.38 × 10−4
𝟎.𝟎𝟐𝟓𝟎

±𝟏.𝟗𝟖 × 𝟏𝟎−𝟒

SVM-RFE
0.0090

±1.76 × 10−5
0.0238

±1.01 × 10−5
0.0202

±5.40 × 10−6
0.0247

±2.74 × 10−6
0.0257

±1.36 × 10−6

mRMR
𝟎.𝟎𝟎𝟓𝟐

±𝟑.𝟓𝟏 × 𝟏𝟎−𝟓
𝟎.𝟎𝟏𝟕𝟑

±𝟏.𝟎𝟕 × 𝟏𝟎−𝟑
𝟎.𝟎𝟏𝟗𝟖

±𝟕.𝟗𝟖 × 𝟏𝟎−𝟔
𝟎.𝟎𝟐𝟑𝟕

±𝟐.𝟒𝟎 × 𝟏𝟎−𝟒
0.0257

±1.05 × 10−4

. Results for Synth_B dataset
hen looking at Figure 12, it is possible to see that

ynth_B dataset’s feature selections yield very similar
ts to Synth_A’s (Figure 11), except for the SVM-GA
re selector. For all predictors, the prediction power of
VM-GA decreases as the number of selected features
ases. It might be a consequence of the nature of our
-GA approach. It defines population size as the number
lected features, and the number of individuals is a

tion of population size and total number of attributes.
higher the number of selected features, the smaller the
ber of individuals in the population.
. Results for Liver dataset

n Figure 13, the results obtained for the Liver dataset are
nted. The overall results show that this dataset poses
re straightforward feature selection challenge for the
ated selectors because all their respective selections can
ve average high prediction scores. The only noticeable
t is that of the Decision Tree feature selector. Just as in
ection 6.3.2, the Decision Tree yields the worst results

evaluated by our predictors, except when a Decision
predictor evaluates its selection. The conclusion here is
he Decision Tree over-fits as well for the Liver dataset.
also worth noting that only SVM-GA, when selecting
features and being evaluated by the SVM predictor,
istently achieved an F-measure of 1.0.

6.3.5. Results for Prostate dataset
Finally, the results for the Prostate dataset are shown.

This dataset is the one that presents the lowest prediction
scores for the feature selection approaches in this work. No
predictor achieved a perfect classification score. Thus, the
Prostate dataset provides the most challenging classification
task among the five datasets.

Looking at Figure 14, just like for other datasets, the
Decision Tree feature selector over-fits for prediction with a
Decision Tree model. The same thing happens to SVM-RFE
and embedded SVM selection. Both yield good results, but
their best results are retrieved when evaluated by an SVM
predictor. Also, SVM-GA gives reasonably good outcomes
when the number of features selected is 5 or 10. However,
its F-measure decreases the higher the number of selected
features is.
6.4. Stability and Reliability

This subsection presents the results for Stability and Re-
liability analysis on the feature selectors. They were obtained
by executing every algorithm for each subset size and dataset
(without perturbation, small perturbation, and considerable
perturbation) 31 times. Then, every stability metric was
taken for these 31 executions. This work evaluated every sta-
bility metric presented in Subsection 3.8.5. However, since
Jaccard, Hamming, Percentage of Overlapping Features,
Ochiai, and Dice all evaluate subset results and retrieve
values with very similar meaning and outcomes to Kuncheva
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(a) Decision Tree prediction scores (b) Naïve Bayes prediction scores

(c) SVM prediction scores (d) Random Forest prediction scores
Figure 10: Prediction Scores for XOR (average of 31 executions)

12, we are only going to present the latter in the results.
anked results, Canberra Distance and Spearman 𝜌 met-
esults are presented. Lastly, the outcomes of Pearson’s
lation coefficient are shown for weighted results. The

equent subsections present a comparative analysis of the
ts from different perspectives on data and measures.
. Kuncheva Index vs Spearman’s 𝜌
uring results analysis, it was noticed that both Kuncheva
and Spearman’s 𝜌 measure yielded very similar results
kinds of sampling and datasets when evaluating subset

ts, even though one addresses stability to subsets and
ther to rank correlation, respectively. To gauge the

rence between them, we employed MAE for the nor-
zed results of every experiment that resulted in subsets.
over, the mean absolute error is minimal: 𝟒.𝟖𝟒𝟗 × 𝟏𝟎−𝟑.

Kuncheva Index is also a wise choice because it satisfies the property
rection for chance, can be addressed to all kinds of results presented
nd, besides that, we only look to subsets of defined size, so the fact
is not fully defined is not a problem.

Table 8 shows the error between some metrics evaluated.
Figure 15 depicts stability results for both metrics in different
datasets and sampling strategies. No significant difference
can be perceived. Further on, due to this high resemblance
between both metrics, we will only show Kuncheva Index
results because it covers more algorithms than Spearman’s
𝜌.
6.4.2. Stability on Significant amounts of Perturbation

Figure 16 shows the XOR dataset results under con-
siderable amounts of perturbation (Subsection 5.2.4). It is
interesting to notice that different metrics yield different
notions regarding magnitude for this case. Nevertheless, for
the Kuncheva Index, the difference in magnitude from the
most stable to the least stable estimator is approximately
30% to 42% of the metric space. While looking at the
Pearson correlation, this difference is even more significant,
accounting for about 53% to 79% of the metric space. Also,
even though Canberra cannot be directly compared to the
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(a) Decision Tree prediction scores (b) Naïve Bayes prediction scores

(c) SVM prediction scores (d) Random Forest prediction scores
Figure 11: Prediction Scores for Synth_A dataset (average of 31 executions)

8
parison of MAE between some of the employed stability metrics results. All metrics are normalized, and distances are
lemented (𝐷𝑐𝑜𝑚𝑝 = 1 −𝐷) before the error calculation. The values in bold are the smallest errors obtained between the two
ators.

Metric Jaccard Kuncheva Spearman Canberra Pearson
Jaccard - 0.0641 0.0746 0.4501 0.0959
Kuncheva 0.0641 - 𝟒.𝟖𝟒𝟗 × 𝟏𝟎−𝟑 0.4012 0.1337
Spearman 0.0746 𝟒.𝟖𝟒𝟗 × 𝟏𝟎−𝟑 - 0.3968 0.1336
Canberra 0.4501 0.4012 0.3968 - 0.4478
Pearson 0.0959 0.1337 0.1336 0.4478 -

two metrics, it is possible to visualize that it has tiny
in the distance between rankings.
ssessed by the Kuncheva Index, some algorithms seem
ve positive stability growth regarding the number of
res, while others decrease. Stability was expected to
ase because the XOR dataset only has two informative
res, and, like so, selecting more variables should lead
ore variance as they are random noise. Lastly, Pearson
elation seems to be the most discriminative metric for

this dataset. Both ReliefF and Random Forest achieve high
positive correlation values. Yet again, both algorithms come
across as the best option in dealing with the XOR dataset.

All metrics indicate that the Decision Tree embedded
feature selection is one of the most stable approaches for
bigger datasets under significant amounts of perturbation.
Decision Tree stability is followed right after by mRMR and
Lasso, which present good results in subsets and rank results
(Figure 17a and 17b, respectively). However, when looking
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(a) Decision Tree prediction scores (b) Naïve Bayes prediction scores

(c) SVM prediction scores (d) Random Forest prediction scores
Figure 12: Prediction Scores for Synth_B dataset (average of 31 executions)

gure 17c, the Pearson correlation coefficient (PCC)
hese algorithms states that the attributed weights are,
neral, negatively linearly correlated, and just about as
as KW Filter and Random Forest. The overall results

he PCC metric indicate that the weights attributed to
tions are inversely correlated. It must be due to the
variance in the input data. Finally, the results obtained
ynth_A, Synth_B, and Liver datasets are very similar
e results for the Prostate dataset. The most significant
rence is that for the Liver dataset, ReliefF and embedded
feature selectors appear to be more stable than mRMR.
. Stability on Small amounts of Perturbation
nother criterion for evaluating stability is how feature
tors respond to small amounts of perturbation. Like the
ts for significant perturbation, stability evaluation on
r datasets tends to yield similar results. Therefore, we
only show the results for Synth_A and XOR datasets.
or the XOR dataset, in Figure 18c, Kuncheva Index
enoted ReliefF as the most stable algorithm when the

number of selected features is 5, but its stability falls when
considering 10 or 20. In this context, the Canberra Dis-
tance metric yields results comparable to Kuncheva Index’s
in terms of ordering. Furthermore, in the scenario of low
perturbation, Pearson correlation shows results resembling
when applied to XOR results with high variance in input data.
Both ReliefF and Random Forest are also the most stable
approaches. Lastly, mRMR and Mutual Information Filter
are the less stable approaches.

Figure 19 shows the results of Kuncheva Index, Canberra
Distance, and Pearson Correlation applied to feature selec-
tions from Synth_A. For Kuncheva Index, it is possible to
notice that for a higher number of selected features, Decision
Tree feature selection has the highest stability among the
algorithms; even so, for a small number of selected features,
it becomes one of the most unstable approaches. Right
after Decision Tree are Kruskal Wallis filter, ReliefF, and
LinearSVM, having returned fair overall results. And lastly,
Random Forest, ReliefF-GA, and SVM-GA retrieve the worst
stability indexes, being, sometimes, very close to the worst
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(a) Decision Tree prediction scores (b) Naïve Bayes prediction scores

(c) SVM prediction scores (d) Random Forest prediction scores
Figure 13: Prediction Scores for Liver dataset (average of 31 executions)

ible value. Canberra distance seems to agree with the
heva Index in most cases.
ast but not least, results change slightly when look-
t the Pearson Correlation. When considering weights,
sion Tree scores drop significantly while ReliefF and
arSVM feature selectors remain in similar positions.
equently, both ReliefF and LinearSVM seem to be good
es for dealing with high-dimensional data in terms of

lity.
. Reliability
e now present the results obtained when evaluating

eliability of results on datasets without perturbation.
ome of the feature selectors are deterministic or have
ex objective function13, they achieve perfect reliability.
group of feature selectors includes Kruskal Wallis

Having a convex objective function implies that, despite the estimator
started with random weights, it will eventually converge to the

al solution if enough iterations are executed during the optimization
ss.

Filter, ReliefF, SVM-RFE, Lasso, and embedded SVM se-
lectors.

Figure 20 compares some results acquired through the
Kuncheva Index and Pearson’s correlation. For the larger
datasets, Synth_A and Liver, the mutual information ap-
proaches, MI Filter and mRMR, have nearly perfect reli-
ability. However, when looking at the XOR dataset, they
are scored as the most unreliable approaches. As for the
Genetic Algorithm based approaches, SVM-GA and ReliefF-
GA, their very stochastic nature has a direct impact on
their respective reliability, consistently achieving low scores.
Finally, it is remarkable that the Decision tree yields better
results than Random Forest overall (except for the XOR
dataset on Pearson Correlation). As Random Forest is an
ensemble approach, it was expected to have results with less
variance.
6.5. Execution time

Table 9 presents the results obtained by the averaged
execution time of all our algorithms for every dataset. All
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(a) Decision Tree prediction scores (b) Naïve Bayes prediction scores

(c) SVM prediction scores (d) Random Forest prediction scores
Figure 14: Prediction Scores for Prostate dataset (average of 31 executions)

ts are measured considering the highest number of
ted features for each dataset: 20 features for the XOR
et, 100 features for Synth_A and Synth_B datasets, and
eatures for Liver and Prostate datasets.
t is possible to note that even though mRMR is a filter
od, it is the slowest of the tested approaches for more
sive datasets because it performs space searches. In
ast, the ensemble approach using Random Forests is the
st-performing selector for high-dimensional data.
igure 21 is a visual comparison of the execution times
rithmically scaled) for all algorithms. It is noticeable
applying a hybrid approach with ReliefF filter before
ing the Genetic Algorithm wrapper lowers processing
significantly. The difference in time is 2 to 10 times
r against the times of a simple Genetic Algorithm wrap-
s shown in Figure 22.
inally, it is possible to notice that execution times of
om Forest and ReliefF are higher for the XOR dataset.
though the data is way smaller in the number of

res, the XOR dataset has more samples. Thus, it causes

a higher execution time for these algorithms than their mean
execution for other datasets.
6.6. Discussion

This section made it possible to bring up insightful
information on where the algorithms better succeed or fail
and compare which one is adequate for the addressed tasks.
It is noticeable that ReliefF is fast and has yielded promising
results in selection accuracy, prediction scores, stability,
and reliability. It shows to be suited in a broad range of
aspects, including when strong feature correlation is present.
It is a compelling universal choice when dealing with small
sample sizes, considering it is a filter approach with good
generalization power. Its major drawback is that it weights all
features without considering any redundancy between them.
Random Forest is also a fast option that yields similar results
to ReliefF in the presence of strong non-linear correlation,
but it did only present good overall results for the XOR
dataset. Nevertheless, it seems to be faster on datasets with
fewer samples. That is not the XOR dataset’s case.
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(a) Kuncheva on Liver dataset (significant amounts of
perturbation).

(b) Kuncheva on XOR dataset (small amounts of
perturbation).

(c) Kuncheva on Synth_A dataset (no perturbation).
(d) Spearman 𝜌 on Liver dataset (significant amounts
of perturbation).

(e) Spearman 𝜌 on XOR dataset (small amounts of
perturbation). (f) Spearman 𝜌 on Synth_A dataset (no perturbation).

e 15: Visual comparison between Kuncheva Index and Spearman 𝜌 metrics on feature selectors that both metrics can evaluate
ts.
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(a) Kuncheva Index. (b) Canberra Distance.

(c) Pearson correlation.
e 16: Metrics comparison for each feature selector algorithm over significant amounts of perturbation on XOR dataset (from
ecutions).

egarding prediction power, it was also possible to per-
that SVM-RFE has yielded the best prediction scores

igh dimensional datasets. Still, it falls considerably
its selections are used in prediction with the XOR

et. Also, embedded SVM and Lasso selections yield
factory results, not as great, but with less computational
. Thus, they are both good candidates to be used on
sive data such as CuMiDa datasets. The SVM-GA was
an interesting approach to test. Its execution time is
lated with its parameterization, but it might be shorter
nding on the stopping criteria. Even though it was
rically parameterized, it yielded outstanding feature
tions for prediction regarding small-size subsets. Be-
, even though it is a wrapper approach, it did not seem
erfit as much as SVM-RFE and the other embedded

edures (Subsection 3.7.7).

Regarding data containing redundancy, as expected,
mRMR obtained the best results. However, it did lack in
terms of all the other measurements we considered. SVM-
RFE, in addition to its prediction power, also seems to
deal very decently with redundancy, with outcomes that
approximate mRMR’s.

As an embedded feature selector, Decision Tree presents
good stability results over prostate and liver datasets. How-
ever, as we utilized fixed subset sizes, non-weighted features
might have been repeatedly selected between executions, and
thus Decision Tree stability result may have been biased. Fur-
ther experimentation is needed to find out. Besides, both MI
filter and mRMR, even though simple filtering approaches,
took longer to execute than expected, with mRMR being
even slower than wrapper approaches. Further investigation
is needed on whether mutual information is a slow approach
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(a) Kuncheva Index. (b) Canberra Distance.

(c) Pearson correlation.
e 17: Metrics comparison for each feature selector algorithm over significant amounts of perturbation on the Prostate dataset
31 executions).

dealing with numerical values or if the implemen-
n (Pedregosa et al., 2011) is sub-optimal. Finally, the
ts were produced from feature selectors, which might
ave had parameters perfectly optimized, and thus, the
ts might not be the optimal outcome. In most cases, the
ed parameters were the values that respective authors
ibraries advised (Pedregosa et al., 2011).
here are still many aspects and situations that our
ework cannot deal with and need further development.
ng the topics that can be improved is that the appli-
n, in its current state, can not deal with incomplete
Also, it does not yet support regression problems.

e from that, all the presented algorithms are imple-
ed to run considering a single-threaded process without
lelism. However, a significant portion of the feature
tors can take advantage of threading and paralleliza-
For example, ReliefF should be able to calculate the

weights for every instance in parallel, whereas Kruskal
Wallis Filter, Mutual Information Filter, and mRMR should
be able to parallelize the calculation of statistical correla-
tion between variables. Genetic Algorithms could distribute
their crossover, mutation, and fitness evaluation operations.
Lastly, any ensemble approach should be able to parallelize
the training and prediction of its estimator components. For
example, the Random Forest ensemble could parallelize the
creation of its decision trees and its prediction process. On
top of that, as they perform many vector operations, several
of these algorithms could also benefit from GPUs.

Furthermore, different kinds of analysis can be done
on the obtained data. For example, one could analyze the
relevance and consistency of a single feature on the results
among different feature selection methodologies. Beyond
that, one could bring these results into the perspective of
domain experts to assess their quality. Besides, it should
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(a) Kuncheva Index. (b) Canberra Distance.

(c) Pearson correlation.
e 18: Metrics comparison for each feature selector algorithm over small amounts of perturbation on XOR dataset (from 31
tions).

ssible to analyze the correlation between the measure-
s discussed in this work so that newer and more general
re selection quality estimators can be investigated.

onclusion
his work presented the fundamentals of feature selec-
and the problems that it tries to solve. We introduced
of the most widespread approaches and feature selec-

methods and delved into their properties and workings.
, we reviewed some metrics that measure prediction ac-
y and stability. After that, several ways in which feature
tions can be evaluated were discussed. Subsequently,
resented how we set up and conducted the experiments.
y, we showed and discussed the results we obtained.
y interesting insights about all the algorithms, results,
even evaluation metrics could be brought up. It was

possible to see that every algorithm works very differently
in many regards, and results show that one algorithm might
be more useful in some specific domain or situation than
others. Also, the usefulness of an algorithm can be evaluated
by different metrics, which, even if accounting for the same
objective, might present different results. For example, we
have shown that two metrics of stability, applied to the same
data, can disagree on the most stable result.

As mentioned in the introduction of this work, one of the
primary motivations behind research in feature selection is
dealing with the ever-increasing amount of data in almost
every field that concerns areas such as machine learning,
statistics, business, and medicine. The volume of gathered
data does not appear to stop growing so soon, and as long as
it keeps increasing, so should research in feature selection.
Thus, it is of great utility that we further extend the proposed
framework, not only to keep up with the state-of-the-art

arbieri et al.: Preprint submitted to Elsevier Page 32 of 38



Journal Pre-proof

Figur
(from

appr
The
infor
in di
comp
not o
that s
work
fram
datab
featu

F
large
infor
the m
cove
singl

MC B
Jo
ur

na
l P

re
-p

ro
of

Analysis and Comparison of Feature Selection

(a) Kuncheva Index. (b) Canberra Distance.

(c) Pearson correlation.
e 19: Metrics comparison for each feature selector algorithm over small amounts of perturbation on the Prostate dataset
31 executions).

oaches but also to attend to more problems and domains.
results presented here give a general, but also very
mative, view of how the presented algorithms perform
fferent aspects and may pose a general baseline for
arison in the field of feature selection. Moreover, we
nly supply this baseline. We also created a framework
upports generating all the results shown throughout this
, making experimentation fully reproducible. Also, this
ework can be, to a greater extent, used to generate more
ases and extended to new algorithms and metrics for
re selection benchmarks.
inally, the resulting data in this work account for a
amount of generated and collected multi-dimensional

mation, and even though we tried to present some of
ost relevant details and insights, it was not possible to

r all and every outcome of the executed procedures in a
e report. On account of that, the complete and already

summarized data is available as supplemental material, and
the framework used was made publicly available.

It is essential to acknowledge the limitations of this
study. One notable limitation is the reliance on binary clas-
sification datasets, which may not fully capture the com-
plexities of real-world scenarios. The decision to only use
binary classification datasets was made to keep the scope of
the study and comparisons feasible, as adding more datasets
and algorithms would make the number of research variables
too high. Future research should endeavor to incorporate
multiclass datasets to provide a more nuanced evaluation
of the performance of feature selection methods. Addition-
ally, while our framework facilitates the comparison and
evaluation of feature selection algorithms, it may be subject
to certain constraints and biases inherent in the datasets
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(a) Kuncheva Index for XOR dataset. (b) Kuncheva Index for Synth_A dataset.

(c) Kuncheva Index for Liver dataset. (d) Pearson correlation for XOR dataset.

(e) Pearson correlation for Synth_A dataset. (f) Pearson correlation for Liver dataset.
e 20: Comparison between the reliability of feature selectors using Kuncheva Index (above) and Pearson’s correlation
cient (below) for XOR, Synth_B, and Liver datasets (31 feature selections).
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9
ithms mean execution times per dataset in seconds when selecting 20 features for XOR dataset, 100 features for Synth_A
ynth_B datasets, and 200 features for Liver and Prostate datasets (average of 93 executions for every dataset and feature

tor pair). The highlighted values are both the fastest and the slowest execution times.

Algorithm
Type Algorithm Dataset

XOR Synth_A Synth_B Liver Prostate

Filter

KW Filter 0.077 5.918 5.744 25.677 15.994

MI Filter 0.494 21.056 23.133 85.502 61.492

ReliefF 0.572 0.207 0.245 0.327 0.564

mRMR 16.238 1990.809 2047.387 14952.389 11208.552

Wrapper SVM-RFE 2.818 426.917 437.269 2300.282 3047.588

GeneticAlgorithm 38.367 1844.029 1842.428 479.918 4804.901

Embedded
DecisionTree 0.006 0.284 0.262 0.273 0.823

Lasso 0.026 0.662 0.633 2.388 2.155

LinearSVM 0.140 0.148 0.144 0.138 0.357
Hybrid ReliefF-GA 22.003 361.554 361.038 42.063 362.393
Ensemble RandomForest 0.583 0.079 0.073 0.068 0.115

e 21: Algorithms execution time comparison on selecting 20 features for XOR dataset, 100 features for Synth_A and
_B datasets, and 200 features for Liver and Prostate datasets (average of 93 executions for each dataset and algorithm).

valuation metrics employed. Researchers should exer-
caution when interpreting the results and consider the
xt-specific factors influencing algorithm performance.
oving forward, several avenues for future research

ant exploration. Firstly, there is a need to investigate the

potential of deep feature selection methods (Section 2) in
improving the performance of traditional techniques. Lever-
aging deep learning architectures to extract informative fea-
tures from high-dimensional datasets could enhance predic-
tive accuracy and robustness. Furthermore, it is crucial to
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e 22: GA and ReliefF-GA execution time comparison on selecting 20 features for XOR dataset, 100 features for Synth_A and
_B datasets, and 200 features for Liver and Prostate datasets (average of 93 executions for each dataset and algorithm).

d the scope of this research to encompass multiclass
ets. While our analysis primarily focused on binary
ification tasks, future studies should evaluate the effec-
ess of feature selection methods in handling multiclass
arios. This extension would provide a more comprehen-
understanding of algorithm performance across diverse
lem domains.
s described in Subsection 5.2, in our experimental
, we considered the parameterization of each feature
tion algorithm to ensure fair and comprehensive evalu-
. The parameters were chosen based on established best
ices, empirical evidence from previous studies, and do-
knowledge, following the standard recommendations
the original publications or the implementation guide-
from software libraries. However, we acknowledge the
rtance of analyzing the impact of parameter choices
lgorithm performance and determining if an optimal
guration for these parameters exists.
o address this concern, our framework easily allows
etup of different values (Subsection 4.6) to conduct
er analysis to investigate the sensitivity of our results to
tions in parameter values. In future work, it is possible
plore the effects of parameter tuning on the perfor-
e metrics of feature selection algorithms across dif-
t datasets and scenarios, as the ideal set of parameter
s is expected to change according to the data. This
sis will systematically vary the parameters within a

efined range and evaluate their impact on selection ac-
y, stability, and computational efficiency. Additionally,
possible to employ techniques such as grid search or
-validation to search for optimal parameter configura-
systematically. However, given the large number of
arisons already present in this study, such analysis is

idered out of scope and would be better presented as a
rate research.
n summary, this study has made significant contribu-
to the field of feature selection by offering compre-

ive insights into algorithm performance, introducing
roducible experimentation framework, and identifying
ues for future research. By addressing the limitations
extending the scope of our research, we can further
nce the understanding and application of feature selec-
methods in managing high-dimensional datasets across
se domains. However, we highlight that the framework,

datasets, and methodology proposed in this paper are freely
available and suited for further experiments, making it pos-
sible to readily adapt the experiments we present to new
feature selection algorithms and types of data, including
multiclass datasets, and the quick comparison between new
and old feature selection models.
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