
Multi-objective prioritization for data center
vulnerability remediation

Felipe Colombelli∗†§, Vı́tor Kehl Matter∗§, Bruno Iochins Grisci∗†§, Leomar Lima‡, Karine Heinen‡,
Marcio Borges‡, Sandro José Rigo∗, Jorge Luis Victória Barbosa∗, Rodrigo da Rosa Righi∗,
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Abstract—Nowadays, one of the most relevant challenges of
a data center is to keep its information secure. To avoid
data leaks and other security problems, data centers have
to manage vulnerabilities, including determining the higher-
risk vulnerabilities to prioritize. However, the current litera-
ture is scarce in the proposal of intelligent methods for the
complex problem of vulnerabilities prioritization. Depending on
the adopted metrics, the priority could shift, compromising
simple sorting-based approaches and impairing the utilization of
conflicting risk assessment metrics. Unlike the related work, this
study proposes a multi-objective method that uses user-chosen
vulnerabilities assessment metrics to output a complete list of
these vulnerabilities ranked by their risk and overall impact in
the context of an organization. The method includes a multi-
objective large-scale optimization problem representation, a novel
population initialization scheme, an expressive fitness function, a
post-optimization process, and a custom way to select the best
solution among the non-dominated ones. The dataset used in the
experiments contains anonymized real-world information about
database vulnerabilities obtained from a private organization.
The experiments’ results indicated that the proposed method
can reduce the number of vulnerabilities needed to reach
an organization’s predefined security targets compared to the
baselines simulating a security team’s analysis. Multi-objective
optimization achieved on average a 48,17% reduction in the
vulnerabilities needed to reach the organization’s target values
compared to the baselines.

Index Terms—vulnerabilities, multi-objective optimization,
database security, risk prioritization

I. INTRODUCTION

Vulnerabilities are flaws in systems, processes, and strate-
gies that result in risks [6]. These vulnerabilities can be found
in data centers, which have to deal with these flaws as soon
as they are identified because it is critical to avoid data
leaks or problems regarding dependencies that can threaten
organizations. Usually, specialists are employed to handle the
vulnerabilities patching, but time and costs might compromise
this process, so it is necessary to identify the priority in which
vulnerabilities must be patched first. Le et al. [14] indicated
that dealing with vulnerabilities is a growing area and that it
can assist in avoiding critical situations for organizations.

According to a survey report [21] conducted in 2019, the
leading cause for the most severe data breaches is unpatched
vulnerabilities, with 39% of companies scanning vulnerabili-
ties at most once per month. Moreover, approximately half of
them do not apply patches in two weeks or less. The average
cost of a data breach was $3.86 million in 2020, and proper
incident response planning resulted in a $2 million reduction
in costs [10].

It is relevant to mention that the patching process occurs af-
ter the scanning process and, differently from the scanning that
has several specialized frameworks to identify and rank vulner-
abilities, the patching process usually depends on the manual
evaluation of security teams to define which vulnerability will
be patched first [14]. However, considering an organization’s
dynamic environment, the security teams must rely on more
than one metric, which is a costly and time-consuming process
to identify the best patching solution. Multiple metrics must be
considered so that the algorithm can recognize the changes of
context or shifts in the organization’s needs [19]. Therefore,
a promising approach to handle vulnerabilities prioritization
is using multi-objective optimization (MOO), which considers
multiple metrics at once [7].

Methods capable of managing complex vulnerabilities pri-
oritization problems require adopting specific priority metrics.
However, the vulnerabilities prioritization can have consid-
erable shifts depending on which metric is employed. So,
multiple metrics must be considered in complex scenarios
like the vulnerabilities remediation to define a prioritization.
Nonetheless, simple sorting algorithms applied to conflicting
risk assessment metrics can disagree with the prioritization.
MOO handles these kinds of disagreements approaches well,
justifying its use in this regard. In Section II, these gaps
are expanded, and the MOO importance becomes even more
evident. Viduto et al. [22] and Farris et al. [5] presented a
similar interest in applying MOO to data security, but their
works have different methods to evaluate and prioritize which
vulnerabilities should be patched. The related work do not
provide a complete prioritization rank because they select
specific sets of vulnerabilities to be patched. Section V will
discuss and expand the differences between this work and theAccepted for publication at IEEE CEC 2022.



related work.
This paper proposes a vulnerability prioritization method

that allows organizations to decide the most relevant metrics
for the evaluation. The method considers predefined metrics
and organizations’ objectives’ targets. These metrics are com-
posed of specific data attributes acquired from an organization
to calculate the risk prioritization. Objectives targets are the
values that must be reached in each predefined metric.

In this work, the distinct metrics combination is treated
as a multi-objective problem [9, 18], in which ranking each
metric is an objective, so MOO is applied to generate the
solutions (the candidate ranks). The advantage of using a
multi-objective approach is the combination and customization
of each metric’s importance, creating a more intelligent and
flexible analysis. The method’s inputs are the dataset of servers
and vulnerabilities and the metrics that the algorithm should
evaluate. The input data must be provided by organizations be-
cause the method itself does not obtain the vulnerabilities from
data centers. Afterward, our method’s strategies for population
initialization and fitness (explained in the following sections)
can be used. After the optimization, the post-optimization
strategy further improves the prioritization results. According
to the user’s predefined preferences, the method output is a list
of vulnerabilities sorted in descending order from the highest
severity risk prioritization to the lowest. This work does
not contemplate the scanning, classification, or the afterward
vulnerabilities patching process.

The experiments showed that the baselines simulating a
security specialist analysis do not achieve the most optimized
patching scenario. These baselines were simulated using the
method explained in Section III-B. Our method expressed a
considerable reduction in the vulnerabilities quantity needed
to reach an organization’s predefined reduction targets. To the
best of our knowledge, this is the first work that proposes
a complete vulnerabilities prioritization method using MOO.
This paper presents the following contributions:

• The proposal of a multi-objective, large-scale optimiza-
tion problem representation for evaluating risk prioritiza-
tion of data center vulnerabilities;

• A novel relevant population initialization based on the
Borda count rank aggregation method;

• An expressive fitness function that uses the Kendall Tau
rank correlation metric for measuring how close to perfect
a solution is, considering a particular objective;

• A post-optimization process for correcting clearly out of
order elements from the final solutions;

• A custom strategy to select the best solution among the
non-dominated ones through metrics that are commonly
reported by specialists.

The remainder of this document has the following organiza-
tion. Section II describes the risk assessment and the MOO ap-
proaches. Section III defines the proposed method. Section IV
presents the experiments and results. Section V describes the
related work, and Section VI presents the conclusions.

II. BACKGROUND

Ranking the vulnerabilities and servers according to specific
objectives to receive patches smartly is recommended to guar-
antee that critical issues are identified and dealt with rapidly
and that the vulnerability remediation lifecycle management
is appropriately handled [14]. Patching time and costs can
thus be reduced using an algorithm that finds the best ranking
solutions. The vulnerability remediation lifecycle starts by
scanning the data servers to detect vulnerabilities. After that,
the security team performs the classification of these vulnera-
bilities, which uses predefined metrics (e.g., risk and age) and
the organization’s guidelines to categorize the severity level of
the vulnerability [6]. Afterward, a risk score is given to each
vulnerability which enables their prioritization and ranking,
allowing the security team to select which solution, a set of
vulnerabilities ranked by specific metrics, should be patched
first.

MOO is a promising strategy that can consider the vulner-
ability assessment and the different predefined metrics, con-
sidering that each of them is represented as an objective to be
optimized simultaneously. There is no single solution in multi-
objective problems capable of optimizing all objectives [9, 18].
Thus, this means that there are several optimal solutions,
because no other solution is better than them considering all
the objectives. For these solutions, it is impossible to improve
one of the objectives without worsening one or more of the
other objectives.

Jacobs et al. [11] argued that the security risk cannot be
reduced to a single value regarding data security applications.
For instance, if there are two metrics available, one for risk
severity and the other measuring the probability of a risk being
exploited, one option is to create a new single metric using
scalarization of the two original metrics. While this strategy
may appear to be a better measurement of risk, only applying
mathematical operations to combine metrics should be avoided
as it can lead to misinterpretation [11]. When multiple metrics
offer orthogonal information about the risk, their values should
be considered simultaneously and individually [11].

Simply aggregating the metrics may become a semi-manual
process that prevents the stakeholders from evaluating well-
informed trade-offs and offers less transparent decisions [9].
Moreover, these strategies fail to account for the changes in
a dynamic environment [9]. On the other hand, dealing with
risk prioritization using the multi-objective perspective may
bring several advantages, even though this topic has been
neglected in the literature [1]. By considering each metric
associated with risk as an objective to be optimized, multi-
objective algorithms can find a set of optimal risk prioritization
ranks, and the users can choose a solution that satisfies their
current needs. This decision can account for distinct needs for
each user and be effectively updated.

The techniques presented in our method are well suited
for optimizing the solutions and achieving the best results for
the chosen metrics. The following aspects will be discussed
in the next section: how the problem is represented; how



the first population is generated to initialize the optimization
process; how to compute each solution’s quality using a fitness
function; which multi-objective algorithms are being used;
and, finally, how a post-optimization method is used to fine-
tune the final set of non-dominated solutions obtained.

III. PROPOSED METHOD

A MOO strategy is employed to tackle the vulnerabilities
prioritization problem. The implemented method generates
possible prioritization ranks for the vulnerabilities through
an evolutionary algorithm. The main goal is to allow users
to make well-informed decisions regarding which server and
vulnerabilities should receive attention first.

This problem-solving strategy allows treating the distinct
vulnerability assessment metrics as objectives in the MOO.
Instead of relying solely on fixed metrics that are propri-
etary to third parties and do not consider the user’s infras-
tructure organization, the multi-objective method allows the
combination and customization of each metric’s importance.
Furthermore, the algorithm enables a versatile parametrization
of the method. Therefore, this allows the user to acquire
the vulnerabilities prioritization solutions for other objectives’
values without executing another risk prioritization process, so
tests with different target values can be easily validated.

After choosing the objectives, i.e., the metrics used in the
optimization process, the user can execute the prioritization
method. These metrics must be numeric or converted to
a numeric format to order the vulnerabilities according to
that metric. Then, the method generates an initial custom
population and utilizes an expressive fitness function to evolve
this population by employing an evolutionary algorithm. After
the optimization, a post-optimization process is performed
to fine-tune the solutions. The user can then define their
preferences for the objectives scalarization and target oriented
search, which will find the best single solution. If these
user preferences change over time, only the scalarization and
target-oriented search processes are re-executed, which are
very computationally efficient. Unlike the optimization with
a priori scalarization, this method prevents the need for a new
execution of the costly optimization process.

A. Problem representation

As mentioned above, the method aims to provide prioritiza-
tion rank lists with solutions containing the vulnerabilities that
the algorithm should patch depending on the user’s preference.
Thus, a possible solution for this problem is a list of rankings,
i.e., positions in the rank of vulnerabilities, where the ones
with the lowest rankings are at the top of the rank and should
be patched first. This way, the optimization process must rank
each vulnerability, focusing on better contemplating the user’s
concerns regarding the patching urgency of each vulnerability
as measured by the adopted metrics (e.g., Common Vulner-
ability Scoring System (CVSS)1 score, number of affected
services, and others).

1https://www.first.org/cvss/

Additionally, the solutions can assign the same ranking for
more than one vulnerability, which means these vulnerabilities
are tied and have the same priority. During the optimization
process, ties are represented as the minimum ranks’ value
[16] that would have been assigned to all the tied values
(also referred to as competition ranking). One example of this
behavior is a rank with three vulnerabilities {V 1, V 2, V 3};
if the vulnerability V 1 is tied with V 3 and has a higher
priority than V 2, the solution rank would look like [1, 3, 1].
Thus, this means that V 1 and V 3 have the same priority
ranking of 1 and that the third position is occupied by V 2.
With competition ranking, the vulnerabilities with the same
score do not have an arbitrary order; instead, they are tied.
A mathematical formulation for this problem is presented by
Grisci et al. [7].

B. Population initialization

The MOO can use an initial personalized population to
acquire the best solutions faster. Therefore, to achieve this
goal, the algorithm received specific additions: (i) the best in-
dividuals according to each isolated objective (Section III-C);
(ii) individuals generated by rank aggregation; and (iii) some
random individuals to explore a broader area of the Pareto
front and diversify the final set of non-dominated solutions.

The rank aggregation individuals (baselines) are obtained
by applying the Borda count method [16] over the best ranks
according to each objective, using different weights for each
rank. The Borda count method gives a weight to each rank
and performs a weighted sum for each vulnerability ranking,
adding up their positions in each rank, multiplied by their re-
spective rank weights. This method and other rank aggregation
strategies are used in several fields, with a highlight for the
analysis of biological data [3, 8, 15].

The random individuals are obtained by randomly choosing
a ranking for each position in the solution vector, i.e., for
each vulnerability. The rankings are lower bounded by the top
position of the solution rank and upper bounded by the last
possible position in this rank. Additionally, as explained in the
last subsection, ties are allowed. Thus, the ranking sampling
for each position in the solution vector is performed with
replacement, which means the same random ranking could
be assigned for more than one vulnerability.

C. Fitness function

A fitness function is employed to assess the quality of
a solution. Since the problem is an optimization problem
with more than one objective, this function must describe
separately how good the solution is for each objective. The
best possible solution for a single objective is a rank ordered
by its defined metric. Additionally, the rank built from sorting
a single objective results in too many ties. This rank has its ties
broken by using the other objectives sorted by their metrics,
resulting in multiple best ranks for each objective depending
on each metric’s priority.

To better understand this functionality, consider the metrics
{M1,M2,M3} represented by the objectives {O1, O2, O3},

https://www.first.org/cvss/


respectively. The two best ranks for O1 are: (I) the rank
ordered by M1, ties broken by M2 and then ties broken by
M3; and (II) the rank ordered by M1, ties broken by M3
and then ties broken by M2. For example, in the case of
rank (I), the first tie-breaking is employed because a number
of vulnerabilities could have the same value of M1, and the
second tie-breaking is used because they could also have the
same M1 and M2 values. However, there is no guarantee that
other vulnerabilities do not possess the same M1, M2, and
M3 values. Such cases may occur in the algorithm given the
characteristics of the current problem domain, where millions
of vulnerabilities are present, and the range of possible values
for each metric is limited.

After computing the two best possible ranks for each objec-
tive (in the case with three objectives), it is possible to evaluate
the quality of any feasible solution. The evaluation process
must compute how close the solution is to each objective’s
two best possible ranks and return the smallest distance. This
rank distance is calculated by the Kendall Tau [13] rank
correlation equation, which results in a number within the
[−1, 1] range. The more correlated the two ranks are, the
greater their Kendall Tau value and, consequently, the closer
the ranks (meaning that they agree more). A Kendall Tau
value of 1 depicts a total agreement between ranks, and a −1
represents total disagreement. It can be defined by Equations
1 and 2, in which τ1(i) and τ2(i) are the rankings of element
i in the lists τ1 and τ2, and P is the set of unsorted pairs of
distinct elements in τ1 and τ2.

K(τ1, τ2) =
∑

{i,j}∈P

K̄i,j(τ1, τ2)K̄i,j(τ1, τ2) (1)

K̄i,j(τ1, τ2) =

{
0 if i and j are in the same order in τ1 and τ2

1 if i and j are in the reverse order in τ1 and τ2
(2)

The Kendall Tau concept is mapped to the notion of distance
between two ranks by multiplying the resulted correlation by
−1, and, thus, the objective becomes minimizing this distance,
the same as maximizing the correlation. In the case with
three objectives, the final three values composing the fitness
vector correspond to the solution’s rank distance to the three
objectives being optimized. Each fitness value is calculated by
taking the minimum distance between the solution rank and
the two best possible ranks for a particular objective.

D. Multi-objective optimization

Two MOO algorithms were selected for comparison in
the optimization process, the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [4] and the Adaptive Geometry Esti-
mation based Multi-Objective Evolutionary Algorithm (AGE-
MOEA) [17]. After the experiments, the algorithm with the
best optimization results was chosen for our method. NSGA-
II is a genetic algorithm with special mating and survival
selection widely used in MOO challenges. In this algorithm,
the individuals are selected front-wise, and then the front is
split based on a crowding distance (the Manhattan Distance
in the objective space) between solutions. This is necessary

because not all individuals in the front can be kept in the next
generation. The extreme points in the front should always be
preserved in the next population. NSGA-II also uses binary
tournament mating selection to improve the selection pressure.

AGE-MOEA, one of the most recent algorithms in the
MOO field, is an adaptive evolutionary algorithm based on
non-euclidean geometry for many-objective optimization. It
estimates the geometry of the generated front and adapts the
diversity and proximity metrics accordingly [17]. The main
characteristic of the AGE-MOEA is that the non-dominated
fronts are sorted using a non-dominated sorting procedure,
then the first front obtained is used for normalization of the
objective space and estimation of Pareto front geometry. One
of the most significant distinctive characteristics of AGE-
MOEA is that it estimates the p parameter of a Minkowski p-
norm to compute a survival score that combines distance from
the neighbors and proximity to the ideal point. The algorithm
also uses a binary tournament mating selection to increase se-
lection pressure. The first evaluation compares each individual
using the rank; afterward, a second evaluation compares the
computed score representing proximity and spread.

E. Post-optimization

Slight changes can still improve the solutions generated
from the optimizer. One option is to apply slight perturbations
to the solutions for obtaining better results. In this case,
because the solutions are ranks of vulnerabilities, a sorting
algorithm that searches for inversions in the rank and fixes
them can be used. An inversion occurs when a vulnerability A
is placed in the rank after vulnerability B, but, considering the
metrics being optimized, A is better in at least one objective
while also being better or equal to B in all the remaining
objectives. If this happens, the described sorting procedure
changes the rank order to put A in front of B.

This inversions search was implemented based on a bubble
sort algorithm due to the lack of the transitivity property in
the rank order of the objective tuples. Consider a scenario
where there are four objectives being optimized in which there
are three elements A, B and C with the metrics values of
[2, 2, 1, 0], [3, 1, 1, 0] and [2, 2, 0, 0], respectively. Suppose a
solution established the order {A,B,C}. In this case, the
elements {A,B} and {B,C} do not have a precise order, so
they must be kept in this ordering, but the element C should be
placed before A. A classic O(n log n) sorting algorithm could
compare A with B and decide that they are ordered (so it
must be an A < B relation); compare A with C and observe
that C < A; and finally it could deduce (without actually
comparing) that C < B, outputting {C,A,B} as the final
order, which would violate the original solution’s established
order of B < C. The bubble sort algorithm does not have this
problem since it always compares two elements next to each
other, performing a swap between them if necessary.

F. Objectives scalarization

In this step, the method receives, from the user, importance
weights between 0.0 and 1.0 for each objective. The weights



reflect the importance the user ascribes to each objective, in
which 1.0 means that the objective is very significant and 0.0
means that it is irrelevant. The method computes a weighted
sum of the objectives’ fitness multiplied by their importance
weights to obtain a single optimality value representing the
quality of a solution given the user preferences. This step is
recomputed each time the user changes a weight.

Such post-optimization scalarization process (also known
as a posteriori scalarization) is currently advised by the
scientific literature in decision support scenarios where it may
be undesirable, infeasible, or even impossible to adopt a single
scalar value for describing the quality of a particular solution
during the optimization phase [19]. For instance, consider an
organization’s complex and dynamic environment in which
there could be thousands or even millions of vulnerabilities
in a particular set of assets. In this case, it may not be
possible to repeat a single-objective optimization process with
a priori scalarization whenever there is a change in the
preferences over the optimized metrics. Additionally, in the
multi-objective a posteriori scalarization approach, the user
can more easily investigate the outcomes a different set of
weights (preferences) may provide, which further justifies its
usage instead of the single-objective optimization approach.

G. Target-oriented search

A practical evaluation of a solution (vulnerability rank) is to
consider the target-oriented search, which measures how many
vulnerability patches, following the rank order, are needed
to reach a specified target value. This value represents the
specific score goal an organization desires to attain for the
considered environments. For instance, the initial scanned
system’s mean vulnerability risk can have a severity score
that varies between 0 and 1000 (higher values indicate higher
vulnerability severity), so, as an example, an organization can
have a vulnerability mean risk score of around 600. If the
organization wishes to lower this risk score mean value to
400 (in this case, this value represents the target value for
particular metric), it must patch some vulnerabilities. The
target-oriented search verifies each solution in the Pareto front,
searching for the one that reaches the specified targets in the
fewest possible vulnerabilities patches. To make this process
computationally efficient, the resulting patching impacts of
every vulnerability patch are previously computed for all
solutions. This computation removes the vulnerabilities from
the rank while recalculating new means for the considered
metrics.

Different metrics besides the vulnerability risk can be
considered in the multi-objective scenario, so the goal is to
minimize simultaneously all targets corresponding to other ob-
jectives. Through these organization-defined targets and a set
of considered solutions, this step computes, for each solution,
how many vulnerabilities have to be patched to achieve the
chosen targets. The best solution reaches the targets in the least
amount of patches possible. Thus, the target-oriented search
step is an extra functionality provided after the optimization
process that complements the user’s preferences scalarization,

tailoring their needs to actual reportable patching impact
results. A user-defined parameter called number of solutions
is used to couple the objectives scalarization with the target-
oriented search for assisting in this process. The number of
solutions specifies how many solutions are to be considered
in the target-oriented search after applying the objectives
scalarization.

IV. EXPERIMENTS AND RESULTS

This section presents a comparison between optimization
algorithms, population initialization (PI) and post-optimization
(PO) strategies to improve the vulnerabilities prioritization.
The experiments intend to demonstrate that MOO can reach
better improvements in the organization’s predefined reduction
targets with fewer vulnerabilities being patched than using
standard prioritization strategies, achieving the organization’s
needs more efficiently.

A. Evaluation Methodology

The algorithms described in this work were coded in
Python 3 and ran on an Intel(R) Xeon(R) E5-2620 v4 proces-
sor, with 32 cores and 2.10GHz, bundled with 128G of RAM.
An organization has provided a real-world dataset extracted
from one of its environments to test the method. This data
contains 64, 409 vulnerabilities distributed throughout 3, 583
assets. Because of the dataset’s size and the problem’s rep-
resentation, the solution vector ended up composed of 6, 419
decision variables, which puts it in the large-scale optimization
problems category [12].

The real-world data used in the experiments come from lists
of vulnerabilities found in a large business organization data
center, which obtained the dataset regarding servers and vul-
nerabilities information from professional scanning softwares.
As inputs for the method, this dataset is filtered to select the
specific attributes that will be used as the following objectives:

• Vulnerability risk: a score that considers the vulnerabil-
ity severity and exploitability.

• Vulnerability age: the measure of time elapsed since the
discovery of the vulnerability in the data center.

• Application importance: the measure of how critical,
confidential, or relevant the data, application, or asset
impacted by the vulnerability is for the organization.

The vulnerabilities dataframe was preprocessed to remove
every duplicate row, i.e., condense all the vulnerabilities with
the same optimized metrics values into a single agglutinated
vulnerability. After the optimization process, when showing
the prioritization rank for the final user, the single agglutinated
vulnerabilities are expanded again into multiple ones, receiving
the same ranking as assigned by a particular solution to that
agglutinated vulnerability. This process reduced the number
of unique entries from 64, 409 to 6, 419, which drastically
decreased the number of decision variables being optimized.
Nonetheless, the problem is still considered a large-scale
optimization problem [12].

In the absence of a widespread benchmark for this area,
the authors proposed the baseline used in the validation.



Therefore, the six best individuals (according to each isolated
objective) and one random individual (choice based on the
population initialization explained in Section III) were selected
to represent the baseline.

The NSGA-II and AGE-MOEA algorithms’ versions were
obtained from pymoo (Multi-objective Optimization in Python
library)2 [2], which models the population size, the number of
offsprings, an initial custom population, crossover, mutation,
among others. For running the experiments, the method’s
parametrization followed the recommendations of Kazimipour
et al. [12] for large-scale optimization problems, so it utilized
the population size of 250 individuals. The chosen number
of generations (300) is the same as tested in [17], and the
remaining optimization parameters are the defaults offered
by pymoo. Additionally, for the experiments considering the
custom initial population, 10 random individuals were de-
fined along with all possible combinations of the weights
{0, 0.25, 0.5, 0.75, 1} for the Borda count solutions, except
those where all the three weights were equal (in this case just
the Borda count weight tuple {1, 1, 1} was considered) and
the ones where there were two zeros (since just one objective
would be considered). The following metrics were used to
verify which experiments achieved the best results in reducing
the number of vulnerabilities needed:

• Hypervolume: A metric widely used for assessing multi-
objective optimization algorithms. It is a metric that
considers the points’ proximity to the Pareto front, its
spread, and diversity. The elements with higher values
represent the best results.

• Vulnerabilities to reach the reduction targets (VRRT):
A custom metric that considers the organization’s goals.
This metric considers the reduction of all the objectives
(mean) predefined by the organization. In Table I, the
reduction targets 1%, 5%, 10%, 15%, and 30% were
considered according to the organization’s needs. The
values presented in the table’s cells are the number of
vulnerabilities needed to reach the determined reduction
target. The lower the better.

The baseline experiments considered all possible composi-
tions for sorting the objectives (described in Section III). The
baseline “M1-M2-M3” is equivalent to patching vulnerabilities
according to the sorted list of vulnerabilities by objective
M1, breaking ties with objective M2 and then M3. Their
evaluations considered only the patching impacts because each
of these baselines is a single solution, and the hypervolume
metric assesses the quality of a solutions’ set. The metrics
for the comparison between NSGA-II and AGE-MOEA were
evaluated considering the mean and the standard deviation of
15 different executions, in which seeds were used to ensure
reproducible results.

B. Main Results

The evaluation of the experiments demonstrated that the
proposed method achieved better results than the baselines.

2https://pymoo.org/algorithms/moo/age.html#nb-agemoea

The comparison between the baselines and the optimization
algorithm’s variants is shown in Table I. Comparing the
resulting hypervolumes, it becomes clear that using the AGE-
MOEA algorithm improves the results obtained by NSGA-II.
However, the main contribution of the proposed method for
the problem domain is depicted by the VRRT results. It is
possible to see that the baselines have a hard time conciliating
the conflicting metrics, having to patch significantly more
vulnerabilities than the proposed method, even considering
all its variations. This metrics disagreement behavior is also
presented by Fig. 1, which shows how each metric’s mean is
affected as the vulnerabilities are patched following a specified
solution’s order. While the AGE-MOEA solution somewhat re-
duces the three metrics as more vulnerabilities are patched, the
best baseline, considering the VRRT of 5%, can only deal with
the reduction of one metric, evidencing its inefficacy for the
complex problem of multi-criteria vulnerability prioritization.
Compared to the baselines, the MOO achieved on average a
48,17% reduction in the vulnerabilities patches needed to reach
the organization’s target values.

C. Ablation Study

The population initialization and the post-optimization
strategies are among the main contributions of this paper.
Therefore, they were analyzed together and separately in Table
I to ensure their significance in the results. It is possible to see,
by analyzing the hypervolume results for AGE-MOEA, that
the custom PI significantly improved the method, achieving
the best results of the table. Besides, the addition of the PI
component greatly impacted the results of AGE-MOEA for
all the collected VRRTs. However, for NSGA-II, that was not
the case since the method performed better without the PI
component for all tested VRRTs, excluding the 10% one.

The PO influence on the results was very mild and without
statistical significance. This was somewhat expected since it
only fixes clearly out-of-order vulnerabilities from solutions
that were already optimized. This way, the PO component
can achieve the best results possible if there is room for
more computations, but it is not crucial for achieving similar
quality results. On the other hand, the PI was very important
for achieving high-quality solutions with AGE-MOE and,
since it is very computationally efficient, its usage is highly
recommended.

V. RELATED WORK

The vulnerability assessment area has related work that
contemplate methods for computing vulnerabilities risk [1,
20, 23]. Although these works do not use MOO, they were
considered theoretical bases for interpreting how to evaluate
the vulnerabilities risk. The MOO methods are not commonly
used for evaluating vulnerability risk prioritization; however,
certain works can contribute to this area [7]. Viduto et al.
[22] used MOO to choose which countermeasures should be
adopted considering the risk assessment cost, while Farris et al.
[5] suggested a framework that evaluates which vulnerabilities
should be patched or not.

https://pymoo.org/algorithms/moo/age.html#nb-agemoea


TABLE I: Comparison between the baselines and MOO experiments considering an evaluation of the 64, 409 vulnerabilities
using the Hypervolume and different percentages of VRRT. Highlights in bold indicate the best results and highlights in gray,
the results with no significant statistical difference (p < 0.01) considering a Kruskal Wallis test with Bonferroni correction.

Experiments Hypervolume Vulnerabilities to reach the reduction targets (VRRT)
1% 5% 10% 15% 30%

B
as

el
in

e

M1-M2-M3 − 59520 64409 64409 64409 64409
M1-M3-M2 − 64340 64340 64340 64350 64350
M2-M1-M3 − 30520 53440 64409 64409 64409
M2-M3-M1 − 30420 62580 64350 64350 64409
M3-M1-M2 − 44940 48170 64340 64350 64350
M3-M2-M1 − 27840 63890 64360 64370 64380
random − 59017.87 ± 4911.09 64186.93 ± 309.17 64382.0 ± 77.34 64391.33 ± 53.37 64409.0 ± 0.0

N
SG

A
-I

I standard 4.88 ± 0.02 2251.33 ± 112.56 18302.0 ± 1278.77 36427.33 ± 1184.29 56423.33 ± 1892.16 64021.33 ± 206.6
PI 4.88 ± 0.02 2300.0 ± 149.95 18442.0 ± 1013.13 35846.67 ± 1412.74 57981.33 ± 2419.94 64070.0 ± 93.73
PO 4.88 ± 0.02 2250.0 ± 112.69 18300.67 ± 1277.54 36424.0 ± 1184.27 56419.33 ± 1889.1 64024.0 ± 202.72
PI + PO 4.89 ± 0.02 2272.0 ± 126.78 18424.0 ± 1008.21 35847.33 ± 1416.89 57980.67 ± 2413.54 64068.67 ± 93.87

A
G

E
-M

O
E

A standard 5.01 ± 0.01 2171.33 ± 149.33 17815.33 ± 1099.77 37945.33 ± 2034.79 57770.67 ± 1384.62 64201.33 ± 68.65
PI 5.38 ± 0.01 2066.67 ± 87.97 14994.67 ± 1065.98 32874.0 ± 1284.79 46604.67 ± 2281.88 62451.33 ± 912.81
PO 5.01 ± 0.01 2170.0 ± 149.57 17796.0 ± 1088.78 37945.33 ± 2034.79 57770.67 ± 1384.62 64198.67 ± 68.54
PI + PO 5.38 ± 0.01 2067.33 ± 89.08 14995.33 ± 1065.54 32874.0 ± 1284.79 46604.0 ± 2280.46 62448.67 ± 911.83
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Fig. 1: Patching impacts on each adopted metric’s mean. The values of the metrics were normalized to enable comparison
among them. The plot on the left shows the best solution of the first AGE-MOEA (PI + PO) experiment, considering the
VRRT of 5%. The plot on the right shows the best baseline, considering the same VRRT.

Viduto et al. [22] suggested a countermeasures prioritization
approach using Multi-objective Tabu Search (MOTS), which
was used to minimize the total investment cost and risk of
a vector of vulnerabilities. Therefore, using this algorithm, a
Pareto front can be built considering all solutions visited and
the ones removed for being dominated. The algorithm’s output
is a set of countermeasures obtained by evaluating the cost and
risk trade-offs.

Farris et al. [5] proposed a vulnerability prioritization frame-
work that integrates output data from a vulnerability scan-
ner tool with user-defined preferences, considering multiple
possible prioritization scenarios and recommending the best
set of vulnerabilities to be patched for that particular context
in a period. The estimated personal hours to remediate vul-
nerabilities were collected by expert interviews with security
engineers among the optimization metrics. While this is an
important metric, it depends heavily on the security experts,
and it could be impossible to enable such assessment for large
organizations with possibly millions of vulnerabilities. The
framework’s output is an array representation that contains

which vulnerabilities should be patched and not the patch-
ing prioritization rank; however, in this case, the algorithm
established in advance an order based on a utility score.
Both papers presented multi-objective problems; nonetheless,
their solutions outputs are not related to ranking all the
vulnerabilities risk prioritization, so they were used only as
theoretical guidelines for MOO.

The vulnerability prioritization ranking is an innovation of
this paper. Thus, considering the flexibility achieved from
using it, the method can evaluate more scenarios since it
does not need to use a previously specified combination of
metrics. The main difference between this paper’s method
and the related work is that, while the other works have
established framework-defined metrics, our method can use
different combinations of user-defined metrics.

VI. CONCLUSION

This paper proposed a method that handles the vulnerabil-
ities prioritization problem using a multi-objective approach.
The experiments and results show that our method reduces



the number of vulnerabilities that must be patched. One of
the main contributions perceived in the results is that our
method can prioritize more significant vulnerabilities to reach
the organization’s predefined reduction targets. A comparison
between the baselines, optimizers, and strategies was presented
to determine the impact of our method. The hypervolume and
the VRRT metrics were used to validate which algorithm’s
configuration would achieve the best results. The proposed
method using the AGE-MOEA optimizer, the population ini-
tialization, and the post-optimization strategy achieved the
best patching results. These improvements have real-world
implications, which can assist the security teams in identifying
the most critical vulnerabilities while avoiding costs and time
consumption to validate the best solution. It can also help the
final users since they will be less exposed to threats and have
access to a more dynamic decision-making process.

Despite the efforts to customize the user-defined objectives,
our method has the limitation of not dealing with dynamic
metrics, in which a simple sorting does not describe the
perfect rank efficiently according to that specific metric. In
the future, the authors intend to research a solution for the
presented limitation, evaluate more multi-objective and many-
objective algorithms and investigate other methods for the
population initialization and fitness function. The method will
be validated with other datasets and application areas to
identify adjustments and improvements.
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