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BRUNO CÉSAR FELTES, EDUARDO BASSANI CHANDELIER,

BRUNO IOCHINS GRISCI, and MÁRCIO DORN

ABSTRACT

The employment of machine learning (ML) approaches to extract gene expression infor-
mation from microarray studies has increased in the past years, specially on cancer-related
works. However, despite this continuous interest in applying ML in cancer biomedical
research, there are no curated repositories focused only on providing quality data sets
exclusively for benchmarking and testing of such techniques for cancer research. Thus, in
this work, we present the Curated Microarray Database (CuMiDa), a database composed of
78 handpicked microarray data sets for Homo sapiens that were carefully examined from
more than 30,000 microarray experiments from the Gene Expression Omnibus using a
rigorous filtering criteria. All data sets were individually submitted to background cor-
rection, normalization, sample quality analysis and were manually edited to eliminate
erroneous probes. All data sets were tested using principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE) analyses to observe sample division and
were additionally tested using various ML approaches to provide a base accuracy for the
major techniques employed for microarray data sets. CuMiDa is a database created solely
for benchmarking and testing of ML approaches applied to cancer research.

Keywords: benchmarking, cancer, classification, curation, machine learning, microarray,

supervised learning, unsupervised learning.

1. INTRODUCTION

M icroarray is a molecular biology technique in which tens of thousands of probes representing a

given DNA sequence are analyzed and quantified to provide a general gene expression profile of

multiple biological samples (Epstein and Butow, 2000; Blohm and Guiseppi-Elie, 2001; Blalock, 2003). The

resulting output of a microarray experiment is a two-dimensional (2D) matrix with genes as rows and samples

as columns (usually coming from different conditions). Each cell in the matrix is a real number indicating

how much a gene is expressed in a sample. These expression matrices will usually have thousands of rows

and dozens or hundreds of columns (Ressom et al., 2009).
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In the last decade, the ongoing availability of microarray data sets became one of the most available

sources of large-scale transcriptomic biological data, propelling Bioinformatics studies and increasing our

knowledge of biological functions and diseases (Tao et al., 2017). Nevertheless, despite the diversity of

microarray studies, the continuous improvement of platform technologies, and the broad selection of

analysis tools, the identification of expression patterns is still a major challenge (Walsh et al., 2015),

specially in diseases, such as cancer. According to the World Health Organization (WHO), cancer is the

second leading cause of death globally,* and understanding the molecular pathways underlying the tumoral

process is a challenge yet to be overcome, especially due to its heterogeneous nature, as observed in

different cancer types (Shen et al., 2016; Hardiman, 2018; Ho et al., 2018; Joseph et al., 2018). Hence,

continuous efforts must be made to understand the expression patterns of different cancer types.

Among the many techniques available to analyze microarrays, machine learning (ML) is being heavily

employed for gene selection and classification of expression data sets, as well as information discovery.

Moreover, cancer data have become a frequently used benchmark for new ML algorithms, appearing even

in pure computational research (Tong and Mintram, 2010). The popularization of industrialized microarray

chips can be traced back to 1995 (Schena et al., 1995), and the application of ML for such techniques is as

old as 1999 when Golub et al. (1999) designed a class discovery procedure for leukemia and Alon et al.

(1999) used a clustering algorithm for analyzing tumor and normal colon tissues. Since then, the use of

microarray data in ML and Bioinformatics became commonplace.

Microarray data can be used in multiple ML tasks, for both computational and biological studies. Under

supervised learning, it can be used to train classifiers able to predict different conditions and help with

diagnostics. Several algorithms had their efficacy tested for this task, such as artificial neural networks,

support vector machine (SVM), k-nearest neighbors (k-NN), and random forest (RF) (Peterson et al., 2005;

Dı́az-Uriarte and De Andres, 2006; Pirooznia et al., 2008; Statnikov et al., 2008). There is no clear

consensus in which algorithm is superior (Allison et al., 2006), but some studies point to SVMs and RF as

the stronger contends (Lee et al., 2005; Pirooznia et al., 2008; Statnikov et al., 2008).

Another use of ML on microarray data is the clustering algorithms. By autonomously grouping samples

by their genes expression according to some similarity criteria, clustering methods can help with knowl-

edge discovery and biological inference about that set of genes or samples (Whitworth, 2010). The review

of Thalamuthu et al. (2006) and the case study of Dash and Misra (2018) compare some of these methods in

microarray analysis. The work of Oyelade et al. (2016) also brings descriptions of the clustering methods

and insights on how to better choose and use them for microarray data.

The employment of feature extraction and feature selection methods on gene expression data is also

common for dimensionality reduction, data visualization, as a preprocessing step for other algorithms, or to

find a subset of more relevant genes. Lazar et al. (2012) and Ang et al. (2016) bring extensive reviews on

this subject.

Despite the ongoing employment of ML for cancer research, there is an increasing difficulty in finding

new databases providing a proper benchmark of microarray data sets, focused on cancer, to be used as a

matter of comparison or testing of ML approaches. As a matter of fact, the proper use and creation of

benchmarks for comparing the result of new tools, and the correct employment of such metrics was recently

discussed as being fundamental for the advancement of Bioinformatics in general (Peters et al., 2018). The

current scenario is that there are specific supplementary files from different works where one may find

available data sets to test or benchmark ML studies focused on cancer research, but they are majorly

scattered through personal, academic, and public repositories. According to a recent review by Ang et al.

(2016) on gene selection methods published between the years of 2010 and 2016, the five most used cancer

microarray expression data sets in the literature were leukemia (Golub et al., 1999), colon (Alon et al.,

1999), prostate (Singh et al., 2002), diffuse large B cell lymphoma (DLBCL) (Alizadeh et al., 2000), and

small round blue cell tumor (SRBCT) of childhood data sets (Khan et al., 2001). As it can be seen, all of

them were relatively old, the most recent being published in 2002.

One aspect that must be observed is that, overall, each author designs their own pipeline and algorithm to

treat the raw data derived from the microarray experiment. Even new works usually employ data sets

already created by other authors, sometimes from decades ago (Alon et al., 1999; Golub et al., 1999;

Alizadeh et al., 2000; Khan et al., 2001; Singh et al., 2002; Ang et al., 2016). Additionally, input quality can

*www.who.int
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strongly influence the precision of the biological results in an ML context. In this sense, raw data contain

inherent noise from the hybridization and manipulation steps of the microarray analysis that can strongly

influence the final results (Kauffmann and Huber, 2010; Owzar et al., 2011). In addition, one must be

careful of how raw data are manipulated before the ML pipeline, and a classical biological approach might

be the most adequate way to treat these data sets than personalized raw data treatment.

Here, we present the Curated Microarray Database (CuMiDa), a repository of 13 different types of

cancer. CuMiDa is an extensively curated database, where more than 30,000 studies of the Gene Expression

Omnibus (GEO) database were individually explored through a rigorous filtering criteria. In this sense,

CuMiDa is composed of 78 handpicked data sets that were submitted to normalization, background cor-

rection, sample viability, sample quality analysis, and personalized editing to provide reliable data sets to

be employed in ML studies for either testing or benchmarking.

2. MATERIALS AND METHODS

2.1. Microarray data sets obtainment

To obtain multiple microarray data sets [GEO Series (GSEs)], data of multiple subtypes of colorectal,

gastric, pancreatic, liver, bladder, lung, throat, renal, brain, prostate, ovary, leukemia, and breast cancers

were downloaded from GEO database using the GEOquery package (Davis and Meltzer, 2007) for the R

platform.{ All the following criteria were applied to select the most reliable data sets: (1) selection of

studies that did not apply chemotherapics, did not conduct gene therapies of any kind, and did not employ

interfering molecules, such as miRNA, siRNA, and so on; (2) studies performed only on Homo sapiens; (3)

microarrays that did not use any form of knockdown cultures or induced mutations; (4) data sets that

contained at least six samples per condition; (5) studies with clear description of the protocols used in the

experiments; (6) studies that did not use any kind of xenograft technique; and (7) studies that made their

raw data available.

The final list of data sets was composed of different platforms from Illumina, Agilent, and Affymetrix

companies. In the end, more than 30,000 studies available at GEO were individually opened and carefully

inspected and manually curated, and 78 microarray data sets were handpicked, including single and dual

channel. Among the 78 chosen data sets, if any sample still matched the previous criteria, they were

manually excluded before preprocessing. Samples that displayed errors, such as irreparable misformating,

or corruption (i.e., cannot even be read by the R package) were also manually excluded. Additionally, the

GEO platform information (GPL) containing the full information of the probe set was obtained and is

provided alongside the data sets.

2.2. Microarray data sets processing

After data obtainment, quality, background correction, and normalization of the 78 selected GSEs were

performed in R. We employed the packages: (1) affy (Gautier et al., 2004) for Affymetrix data sets; (2) lumi (Du

et al., 2008), beadarray (Dunning et al., 2007), and illuminaio (Smith et al., 2013) for Illumina microarrays;

and (3) the package limma (Ritchie et al., 2015) for Agilent and other platforms, when needed. The package

Biobase (Huber et al., 2015) was employed in multiple occasions for information of biological data. After

normalization, all data sets were analyzed by the R package arrayQualityMetrics (Kauffmann et al., 2009) to

access the sample quality of the selected microarrays. Samples that displayed low quality in at least half of any

parameters measured by arrayQualityMetrics were discarded. Each final normalized matrix was then man-

ually curated to remove unwanted probes that are not related in any way to nucleic acid sequences.

2.3. Data set generation for ML

The final expression matrices, containing the list of probes with background correction, normalization,

and the samples approved by the quality analysis, were converted to the formats .arff,{ .csv, .tab, and .gctx

{ www.r-project.org
{ https://www.cs.waikato.ac.nz/ml/weka/arff.html
x https://software.broadinstitute.org/software/igv/GCT
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and .cls,** which are common file formats for data mining and ML techniques. In this sense, Attribute-

Relation File Format (.arff) is the default extension file to be employed in the Waikato Environment for

Knowledge Analysis (WEKA) program (Frank et al., 2016), whereas Comma-Separated Values (.csv) and

Tabular (.tab) are regular table file formats, readable by multiple programs, including Microsoft�Excel and

the R programming language, but .tab can also be opened in the Orange Datamining tool for ML testing.{{

Finally, .gct and .cls are file formats for the GenePattern platform for reproducible Bioinformatics (Reich

et al., 2006). Thus, files for several computational and biological platforms are available from the start,

without the need of parsers, preprocessing, or conversion.

2.4. ML methods for benchmarking comparison

Values of threefold cross-validation accuracy were generated by different ML approaches employed for

each data set using the WEKA program. The classification algorithms used were (1) SVMs, (2) decision

trees (DT), (3) RF, (4) Naive Bayes (NB), (5) multilayer perceptron (MLP) with a single hidden layer with

10 neurons, and (6) k-NN. The ZeroR classifier, which provides a classification baseline, was also em-

ployed. In addition, the following clustering algorithms were tested: (1) k-means (k-M) and (2) Hier-

archical clustering (HC). Although all algorithms were tested using the default parameters provided by

WEKA, their specifications and the command line which generated them are available inside each indi-

vidual output in the database.

Two methods for dimensionality reduction and visualization, principal component analysis (PCA) and

t-distributed stochastic neighbor embedding (t-SNE), were also applied to each data set, and the 2D charts were

made available. These algorithms were implemented using the scikit-learn Python library (Pedregosa et al.,

2011), with two components and default parameters. As recommended by Maaten and Hinton (2008), before

using t-SNE we ran PCA over the original data. The methodological workflow can be found in Figure 1.

3. RESULTS

3.1. Database overview and interface

CuMiDa contains 78 data sets, from which 73 are unique. Some studies performed the same experiments

in different platforms; thus, in those particular cases, we divided the samples of each platform and treated

FIG. 1. Summary of the methodological steps taken in this work. See main text for the full description of each

step. See Section 2 for filtering criteria.

**http://software.broadinstitute.org/cancer/software/genepattern/file-formats-guide#CLS
{{ https://orange.biolab.si/
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them separately to avoid any bias. From the 78 microarrays, 5 are dual-channel and 73 are single-channel, where

the single-channel ones contain 2 separate files: 1 containing the probes and the normalized expression values, and

another one containing the classes. Due to the nature of dual-channel experiments, in which the expression values

related to each sample are already a comparison between two distinct conditions, those data sets do not contain a

separate class file and are not intended for classification methods. In contrast, they would be more suitable for

clustering techniques. Taking into consideration the importance of the data set year of publishing, the oldest

microarray studies available in CuMiDa are from 2007, whereas the newest are from 2017.

Each data set containing the probes provides the expression values derived from the processing step and

was manually edited to remove probes that are not related to nucleic acids. Please note that each company

has its own pattern for probe names. Moreover, each class files yield the number of classes and the names

they contain are related to the different tissue types analyzed in their respective samples as they appear in

the expression values file. Normal (control) samples were treated as one single class in some cases where

they would not reach the minimum of six samples per class to be used as inputs in the ML protocol. This

happened for GSE77953, GSE10797, and GSE89116.

In other cases, control classes were deleted because they also did not reach the minimum of six samples

total, leaving only the cancer classes to be classified. This happened for GSE6008, GSE28427, GSE15824,

and GSE59246. The late four, even after the exclusion of the normal (control) samples, still posses two or

more classes. Finally, GSE15824, GSE7904, and GSE57297 had one or more classes (experimental)

removed since it did not reach the minimum of six samples required. Nevertheless, these fusions or

exclusions will not affect the utility of these microarrays or they biological meaning, as they still possess

two or more classes to be classified. Moreover, by clicking on the GSE code, CuMiDa will redirect the user

to its GSE page in GEO. Finally, by clicking in the platform button, the user can download the full GPL

information regarding the data set. GPLs contain multiple probe information, such as Gene Symbol En-

sembl code, full name, associated gene ontologies, and many others. We chose to provide the GPLs

separated from the main data sets to avoid larger microarray files—thus, only the information requested by

the user is selected.

From the main interface, the user can query for data sets based on: (1) the type of cancer, which

comprises 13 different types; (2) order by crescent number of wanted samples, which ranges from 12 to

FIG. 2. Overview of the CuMiDa database interface. The initial interface offers the following options: (a) filter by

cancer type; (b) filter by GSE ID; (c) list of cancer types; (d) list of GSE codes. By clicking in the code, the user is

redirected to their given GEO page. (e) Platform information. By clicking on the link, the full platform data, containing

all available information of the platform (e.g., probe names, gene symbols, gene ontologies), can be downloaded. (f)

Number of samples. This column can be rearranged to display the number of samples from lowest to highest number

and vice versa. (g) Number of genes for each GSE. This number changes depending on the manufacturer and employed

platform. (h) Number of classes. They can be ordered the same way as the samples. Dual-channel GSEs appear with 1.

(i) All available download formats for the data. (j) PCA and t-SNE results. The user can access the plots by clicking on

it. (k) All available benchmarks. By clicking on the link, the user can download the full WEKA output for each

benchmark. See main text for the full description. CuMiDa, Curated Microarray Database; GEO, Gene Expression

Omnibus; WEKA, Waikato Environment for Knowledge Analysis.
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357; (3) order by crescent number of genes (features), which ranges from 12,621 to 54,676; (4) order by

crescent number of classes, which ranges from 2 to 5; or (5) list all. The last option will simply list all 78

data sets in alphabetical order based on the cancer type. Regardless of the choice, the database will return

the desired data sets and the information associated to it. In this sense, CuMiDa indicates the accuracy

values of the different ML approaches tested for each data set: SVM, DT, k-NN, NB, RF, MLP, HC, and

k-M (Fig. 2).

CuMiDa offers the baseline and threefold cross-validation results for the most employed ML algorithms

for microarray analysis, together with the WEKA output for each individual case. Thus, the user can

download the full information regarding the WEKA analysis for each algorithm, for their respective GSE.

These basic analyses were added to aid users in the comparisons between their own methods and default

versions of the most popular ML approaches for microarray analysis. Additionally, the command lines

employed to generate the WEKA analyses are available inside each file. All the threefold cross-validation

accuracy results can also be found in Supplementary Table S1.

PCA and t-SNE charts in 2D are also provided (Fig. 3). Although these results are not a quality

parameter, they show the default distribution of samples for each class. Tumoral cells, by nature, are

heterogeneous (Shen et al., 2016; Hardiman, 2018; Joseph et al., 2018) and difficult to be clearly separated

among themselves and, sometimes, even from the normal tissue. Thus, it is important to previously know

the default distribution, before applying any ML approach to a given data set, to compare future results. In a

nutshell, the expected results are better distributed samples.

4. COMPARISON TO OTHER DATABASES: WHY IS CUMIDA DIFFERENT?

In this section, we will compare databases in which their purpose can be associated to CuMiDa.

However, please note that we are only listing databases that possess similar characteristics or that can, in

some level, be compared with CuMiDa (Table 1). There are other curated databases focused on microarray

data. For example, inSilicodb (Taminau et al., 2011), an R package, is a curated microarray database

containing 86,104 Affymetrix data sets. There are a number of differences between inSilicodb and CuMiDa,

aside from the fact that CuMiDa is focused only on cancer data sets. For instance, inSilicodb offers data sets

that have already been curated by the Bioinformatics community, thus they do not offer a uniform protocol

of how the data sets were selected and manipulated.

In addition, there is no description of exclusion of bad quality samples by inSilicodb, which is one of the

major biases if ML approaches are to be employed for analysis since the algorithm would be learning from

potential erroneous data. Finally, inSilicodb is focused on Affymetrix data, whereas CuMiDa was curated

from all microarray data sets focused on cancer available in GEO, from all platforms. Obviously, the major

highlight is that CuMiDa was exclusively built for ML approaches; thus, it offers metrics for basic ML

Table 1. Comparison Between the Databases Most Closely Related to Curated Microarray Database

Databases Curated Source Quality controla Up to dateb File formatsc Benchmarksd

CuMiDa Yes RAW format Yes Yes .csv, .tab, .gct, .cls, .arff Multiplee

inSilicodb Yes Varies NS Yes NA None

datamicroarray No Author’s No No .r, .RData None

BioLab No Author’s No No .tab k-NN

BIGS No Author’s No No .arff None

We are only listing databases that possess similar characteristics or that can, in some level, be compared with CuMiDa.
aReferring to low-quality sample exclusion.
bWe are taking into consideration databases that offer data sets from the last 5 years or if the majority of the data sets are at least

from the last 10 years.
cSome databases, such as inSilicodb and datamicroarray, which are R packages, can be exported in different formats, due to R

flexibility. In this case, we are only listing the default entries they offer or their regular file format. inSilicodb, however, does not

possess a file format since the information is imported directly into R.
dFor benchmarks, we are listing the different techniques these databases compare their available data sets. In this case, since

inSilicodb offers data sets curated by the community, the condition they were build depends on the user.
eSVM, DT, RF, k-NN, NB, MLP, HC, k-M.

BIGS, BioInformatics Group; CuMiDa, Curated Microarray Database; DT, decision trees; HC, hierarchical clustering; k-M,

k-means; k-NN, k-nearest neighbors; MLP, multilayer perceptron; NA, not applicable; NB, Naive Bayes; NS, not specified; RF,

random forest; SVM, support vector machine.
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techniques, as well as the download of different file extensions. Another crucial difference is that inSilicodb

is directed toward bioinformaticians that have a biological background to begin with. In contrast, CuMiDa

was made to bypass the need of a priori biological background, making data sets available with a uniform

preprocessing already manipulated and edited in its final format.

Another R package, datamicroarray (documentation can be found in the package site{{ and more can be

acquired at GitHubxx) is focused on obtaining and processing microarray data sets, most from cancer

studies, for ML purposes. Both databases provide classes number and their respective diseases, but there are

major differences between datamicroarray and CuMiDa. In this sense, datamicroarray data sets are not

curated from full microarray data sets, in contrast, they are derived from studies that already applied ML

techniques and thus were already processed by various approaches. Additionally, there is no low-quality

sample control, no benchmarking results, or curation processes of any kind. Finally, another major aspect is

that most studies available in datamicroarray are from 1999 to 2006, falling into the same category as

previously mentioned of data sets that are heavily employed throughout the literature with no curation and

quality preprocessing. The same happens for the data sets available at the Broad Institute*** and the

OpenML repositories,{{{ which provide various microarray data sets for ML, but with none of the curation

and preprocessing protocols offered by CuMiDa.

Moreover, another important mention is the BioLab supplementary database{{{ (Mramor et al., 2007). In

this work, the authors employed 18 data sets, including some classical examples, and made the .tab files for

Orange usage available for download. The website also offers classification results, based on Radviz

visualization and k-NN, and lists of top ranked genes according to their method. However, these data sets

were not curated with the same rigorous filtering protocol and classical preprocessing offered by CuMiDa.

Additionally, CuMiDa still offers more file download options and benchmark results.

Another repository that makes available handpicked microarray data sets, built for ML, is in the

BioInformatics Group (BIGS) website,xxx which provides a list of different data sets, their .arff format for

download, as well as training and test data sets. But they are not curated, preprocessed, do not provide other

file formats, nor benchmarking results.

Thus, the curated data sets offered by CuMiDa, together with the available benchmarking results and

different file formats for download, make it a valuable addition to the existing databases focused on

microarray studies for ML.

Table 2. Classification Accuracies

(Threefold Cross Validation) with Their Mean,

Standard Deviation, and Median Values

for Each Applied Algorithm Over

All Single-Channel Data Sets

Algorithm Mean – SD Median

ZeroR 0.55 – 0.15 0.51

SVM 0.88 – 0.14 0.94

NB 0.84 – 0.15 0.89

RF 0.85 – 0.15 0.90

DT 0.76 – 0.18 0.81

MLP 0.84 – 0.17 0.89

k-NN 0.81 – 0.16 0.86

k-M 0.73 – 0.17 0.72

HC 0.59 – 0.16 0.55

SD, standard deviation.

Bold represents the best average accuracy and best average

median found.

{{ https://www.rdocumentation.org/packages/datamicroarray/versions/0.2.3
xx https://github.com/ramhiser/datamicroarray
***http://portals.broadinstitute.org
{{{ https://www.openml.org/search?type=data
{{{ www.biolab.si/supp/bi-cancer/projections/
xxx http://eps.upo.es/bigs/datasets.html
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5. VALIDATION OF DATA SETS AND BENCHMARKS

It is interesting to note that the accuracy results obtained by applying different ML classification al-

gorithms to the data sets available in CuMiDa are in agreement with the scientific literature, where SVM

and RF displayed the overall higher accuracy (Lee et al., 2005; Pirooznia et al., 2008; Statnikov et al.,

2008) (Supplementary Table S1), exhibiting a mean of 88% and 85% of classification accuracy, respec-

tively (Table 2), even though only the default parameters of WEKA were adopted.

In contrast, DT and k-NN displayed the lowest mean classification accuracy of 76% and 81%, respec-

tively, excluding the ZeroR algorithm. ZeroR was included as a baseline since it only classifies each sample

as belonging to the largest class in the data set and, as expected, presented the worst results. As for the

clustering results, k-M showed better results than HC, which, by its turns, displayed the second worst result

aside from ZeroR.

CuMiDa has already successfully contributed to a gene expression pattern identification research that

used the data available from some of the breast, colorectal, and leukemia cancers. This study employed

neuroevolution ML algorithms and performed gene selection and sample classification over 13 GSEs

present in CuMiDa (Grisci et al., 2018).

Finally, according to Peters et al. (2018), who discuss the role of benchmarks in computational biology,

there are seven criteria to be considered when evaluating a benchmark. In Table 3, we discuss how CuMiDa

fulfills these criteria.

6. CONCLUSION AND PERSPECTIVES

Despite the fact that there are numerous databases that provide data sets, scripts, or curated information

for microarray analysis, CuMiDa is the first database that was exclusively designed to provide curated data

sets focused only on cancer microarray analysis for ML. By providing rigorously handpicked, pre-

processed, and manually edited data sets, together with different file formats for download and numerous

benchmark testing values for various ML approaches, CuMiDa becomes an important addition to the

existing toolkit for both biological and computer science community. Currently, CuMiDa offers only

microarray data sets for H. sapiens. However, for future updates, we aim to provide curated data sets of

RNAseq studies. RNAseq is the most recent source of biological large-scale expression data, and ML

approaches are also being implemented to deal with this kind of data. Moreover, the addition of mice

microarray cancer data is also a possible update. Studies that employ the mice model usually possess way

more samples than H. sapiens studies and could become valuable additions to train and test ML approaches.

CuMiDa is available at http://sbcb.inf.ufrgs.br/cumida
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