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Abstract—While Dynamic Adaptive Streaming over HTTP
(DASH) is the standard for media delivery, most adaptive bitrate
(ABR) algorithms remain reactive. Integrating predictive insights
without compromising system design is a key challenge. This
paper presents a feasibility study of an ML-enhanced DASH
architecture that generates lightweight, interpretable prediction
hints to enable proactive ABR. We validate the framework using
a case study on over 10,000 hours of real traffic traces from
Brazil’s Rede Ipê backbone. Using Random Forest and Gradient
Boosting models, we compare a DASH-only feature set against
one enriched with network metrics (RTT, traceroute). Our
results demonstrate the viability of the architecture and highlight
key network indicators that drive predictions. By focusing on
interpretability and statistical validation, our work provides a
transparent framework for integrating predictive modules into
DASH ecosystems, laying the groundwork for more robust, next-
generation ABR algorithms.

Index Terms—Predictive Adaptive Streaming, AI-driven
Decision-making, Multimedia Architectures

I. INTRODUCTION

Adaptive streaming enables the delivery of video over the
internet by dynamically adjusting the quality of the delivered
content according to network conditions [1]. One widely
adopted adaptive streaming technique is Dynamic Adaptive
Streaming over HTTP (DASH). In the DASH approach, the
video is divided into small segments, which are made available
to the client at a variety of bitrates, that is, different amounts
of data per second, corresponding to different levels of com-
pression and visual quality [2]. The DASH client must request
in real-time, during its execution, the next content segments
in a way that optimizes the bitrate while avoiding playback
interruptions (i.e., buffering), thereby ensuring a seamless
viewing experience even in fluctuating environments [3].

While traditional DASH algorithms are based on reactive
methods that simply respond to the current situation of the
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network, predictive methods capable of anticipating the fu-
ture network state with a certain degree of accuracy could
significantly improve the efficiency of such systems [4], [5].
By forecasting likely changes in bandwidth or latency, pre-
dictive approaches enable the system to adapt in advance, for
example by pre-loading higher-quality video segments during
anticipated high-bandwidth periods or lowering quality before
a predicted drop, thereby ensuring more seamless playback
compared to purely reactive techniques [4].

This work presents a foundational feasibility study of an
architecture for integrating ML prediction hints into DASH
to improve ABR algorithms. Our key contribution lies not
in the discovery of specific prediction rules, but in providing
a validated interpretability framework that demonstrates how
lightweight, transparent models can be embedded in DASH.
Our experiments compare a base feature set—containing only
DASH measurements—against an enriched configuration that
incorporates path and latency metrics, thereby revealing which
measurements most strongly influence future bitrate selections
and establishing a roadmap for subsequent investigations. It is
important to note that this study focuses on the prediction
module; a full end-to-end evaluation of how these hints
translate into QoE improvements within an ABR is left as
future work.

Our design philosophy is centered on interpretability, a cru-
cial factor for network operators who must validate automated
decisions to ensure operational trust. This emphasis aligns with
foundational research highlighting that model transparency is
a prerequisite for deploying trustworthy ML-driven systems
in production environments [6]. By exposing the contribution
of each input variable, operators gain actionable insights into
network behavior, facilitating proactive tuning of streaming
parameters and fostering confidence in automated bitrate de-
cisions. Such clarity not only supports more effective resource
allocation but also ensures that stakeholders can audit and trust
the adaptation logic as it responds to changing conditions [7].
Building on this, we employ a family of ensemble predictors
- namely Random Forest (RF) and Gradient Boosting (GB) -
known for their balance of expressiveness and explainability,



and we evaluate them under both feature configurations.
Our dataset derives from measurements collected on Rede

Ipê, the Brazilian National Research and Education Network
backbone that connects over five hundred academic insti-
tutions. Between June and October 2024, two PoPs (Rio
de Janeiro and Salvador) generated application-level traces,
issuing periodic bursts of fifteen DASH segment requests and
logging bitrates, request durations and success rates. Simulta-
neously, MonIPÊ captured ten-sample round-trip time (RTT)
histograms and traceroute paths from server PoPs (Brası́lia,
Fortaleza, Teresina and Vitória) toward the clients. All records
were serialized, subjected to validation, and synchronized
into 1-hour slots, producing over ten thousand observation
windows.

This paper is organized as follows. Section I introduces
the study and its objectives, while Section II reviews related
works in predictive adaptive streaming, network performance
prediction, and the machine learning techniques adopted for
this work. Section III then introduces the proposed models
within the DASH ecosystem, describing its design principle,
operational flow, and expected benefits for proactive bitrate
adaptation. Sections IV and V describe the dataset — in-
cluding data sources and pre-processing steps — and the
methodology, detailing data filtering, feature selection, model
configuration, and evaluation procedures, respectively. Sec-
tion VI presents the experimental setup and results, followed
by a discussion of the findings. Finally, Section VII concludes
the paper by summarizing key insights, addressing limitations,
and suggesting directions for future research.

II. RELATED WORK

Conventional Dynamic Adaptive Streaming over HTTP
(DASH) clients rely on purely reactive bitrate adaptation
strategies, adjusting to metrics like throughput or buffer occu-
pancy at runtime [4]. While simple to deploy, these heuristics
often underperform in variable network conditions, causing
avoidable rebuffering and bitrate instability [4], [8]. To over-
come these limitations, many studies have proposed predictive
DASH architectures that anticipate network fluctuations to
adapt video delivery proactively [4], [5], [8]–[10].

Interpretability of these adaptive bitrate (ABR) predictors,
however, has been less studied. The internal decision-making
logic of many machine learning models is often opaque,
complicating troubleshooting and failing to provide clear in-
sights into why certain ABR decisions are made. In contrast,
interpretable models increase operational trust and adoption
by making the decision logic transparent. This transparency al-
lows providers to mitigate systematic failures, customize ABR
logic for specific users or content, and audit bitrate decisions
for fairness and bias in large-scale deployments. Frameworks
such as feature importance can help operators understand the
impact of network parameters on bitrate selection [11].

Overall, a gap remains in the literature regarding the inte-
gration of interpretable ML models within a practical, modular
DASH architecture. Our work addresses this gap by presenting
a feasibility study of such an architecture, moving beyond

simulation to validate it with data from a production backbone.
We propose a modular design with an embedded prediction
service that leverages inherently interpretable models, namely
Random Forest and Gradient Boosting, to deliver explainable
and trustworthy insights for next-generation ABR systems.

III. BRIDGING PREDICTION MODELS AND DASH
ARCHITECTURE

Recent studies have showcased how predictive modeling
can improve Quality of Experience (QoE) in video streaming
[12]–[14]. However, integrating such models into existing
ecosystems presents significant architectural challenges. Our
proposed architecture, illustrated in Figure 1, is designed to
embed predictive intelligence into the DASH workflow in a
modular, efficient, and non-disruptive manner.

Encoder

Server-side Client-side
Prediction Layer

Recent Connection 
       History

  Train or Tune 
Predictive Model

Interpretability
Network Quality
Prediction Model

Request quality 
 based on ABR
  predictions

     Network 
Prediction Hints

Media Player

ABR algorithms
 enhanced by 
  server-side
  predictions

Fig. 1: Proposed architecture of Adaptive-Streaming Ecosys-
tem enriched by network prediction.

A core design principle is to decouple the computationally
intensive prediction logic from the client’s Adaptive Bitrate
(ABR) algorithm. As shown on the server-side of Figure 1,
a dedicated AI Network Prediction module is responsible
for all ML-related tasks. This module processes the Recent
Connection History to train and execute a Network Quality
Prediction Model . By centralizing this logic on the server,
clients with limited computational power are not burdened
with running complex models, making the approach widely
applicable across heterogeneous devices.

The system delivers tailored, server-side hints specifically
for each client connection. Instead of dictating a specific
bitrate, the server generates Network Prediction Hints based on
its analysis—forecasting impending congestion or periods of
high stability—which are sent to the client alongside standard
DASH content. The client’s ABR algorithm is then free to
use this information to enhance its decisions, for instance,
by proactively selecting a lower bitrate before a predicted
drop in throughput to avoid a stall. Crucially, this hint-
based mechanism ensures non-disruptive adoption, as legacy
clients that do not support this feature can simply ignore the
supplementary data and operate using their default ABR logic.
This approach ensures backward compatibility and allows for a
gradual rollout, enabling proactive streaming strategies without
requiring an overhaul of the existing DASH ecosystem.

While this predictive approach offers significant advan-
tages—such as proactively mitigating buffering by anticipating



network fluctuations—its practical implementation faces sev-
eral hurdles. Key challenges include maintaining model accu-
racy and generalization across dynamic network conditions,
managing the operational costs of scalability and frequent
retraining, and ensuring seamless, secure integration with
existing streaming architectures without compromising data
privacy or interoperability.

IV. EXPLORING A REALISTIC DATASET

The empirical foundation of our study rests on measure-
ments gathered between June and October 2024 over the Rede
Ipê infrastructure1, the nationwide academic backbone that
interconnects more than five hundred research and educational
institutions in Brazil. Within this backbone, two Points of
Presence (PoPs), located in Rio de Janeiro (RJ) and Salvador
(BA), were instrumented as clients, while four PoPs in Brası́lia
(DF), Fortaleza (CE), Teresina (PI) and Vitória (ES) fulfilled
the role of servers. This deployment yields a total of eight
logical client–server pairs, denoted respectively by the sets
C = {RJ,BA} and S = {DF,CE,PI,ES}.

End-to-end network performance was captured through two
complementary tools. Neubot DASH [15], obtained via the M-
Lab platform, emulated an HTTP adaptive streaming client by
issuing a burst of fifteen DASH segment requests every five
minutes from each node in C to every node in S. For each
request, the experiment logged the HTTP transaction times-
tamp, segment bitrate, and various transport-layer statistics,
storing all data for a five-minute window in JSON-lines format.
Concurrently, MonIPÊ, a network observation tool maintained
by the Rede Nacional de Ensino e Pesquisa (RNP), monitored
the Rede Ipê backbone by recording round-trip time (RTT)
histograms from ten consecutive latency samples and issuing
traceroute probes from servers to clients to log intermediate
hops and delays. These network-level results were serialized
in JSON, enabling a detailed reconstruction of both per-hop
path characteristics and temporal latency patterns.

Together, Neubot DASH and MonIPÊ deliver a rich, syn-
chronized view of streaming performance and underlying
network state. The DASH traces reveal how application-level
bitrate decisions interplay with delivery success, while RTT
and traceroute logs expose the transient behaviors of the
transport and routing layers. Prior to analysis, all raw files were
subjected to rigorous validation: any JSON record missing
expected fields, incomplete histograms or truncated traceroute
paths, as well as DASH windows lacking the full complement
of segment requests, were discarded. The resulting corpus
comprises over ten thousand validated five-minute windows,
spanning all eight client–server combinations and capturing
diurnal, weekly and cross-geographic variations. This dataset
forms the backbone for our feature engineering and model
training pipelines described in Section V, offering a realistic
substrate for evaluating predictive approaches in adaptive
streaming.

V. METHODOLOGY

The methodological workflow is summarized in Figure 2.
We collected DASH and MonIPÊ measurements from Rede
Ipê and synchronized them at 5-minute intervals. All valid
records were aggregated into 1-hour slots; slots with fewer
than 10 DASH or 5 RTT/Traceroute samples were discarded,
resulting in 10,142 usable windows. Feature engineering in-
cluded incremental differences of bitrate, RTT, and path met-
rics, followed by normalization with a standard scaler.

We modeled four predictive tasks: deltas of bitrate mean
and standard deviation at t+5 and t+10 minutes (mean_1,
stdev_1, mean_2, stdev_2). To assess the contribution
of network-level signals, we compared two feature sets: (i)
Base, containing only DASH statistics; (ii) Enriched, adding
RTT and traceroute features such as hop-count variability and
aggregated RTT.

Random Forest (RF) and Gradient Boosting (GB) were
selected for their balance of accuracy and interpretability, as
recommended in ABR studies [16]. Hyperparameters (e.g.,
trees, depth, learning rate) were optimized via grid search
with cross-validation, minimizing Mean Absolute Percentage
Error (MAPE). The dataset was split into 75% training and
25% testing, yielding eight models (RF and GB across both
feature sets and all four targets). Performance was compared
on the held-out set, and feature importances were analyzed to
interpret decisions.

A. Experimental Setup

Experiments were run in Python 3.10.12 using
scikit-learn (v1.5.1), pandas (v2.2.2), and scipy.
To ensure robustness, all experiments were repeated with 11
random seeds.

B. Evaluation Protocol

Model performance was evaluated using three metrics: (1)
MAPE, as in prior studies [5], [9], [10]; (2) Train Time, mea-
suring computational cost; and (3) Inference Time, reflecting
runtime feasibility.

C. Explainability Algorithm

We employed RuleFit [17], [18], which extracts decision-
tree rules from RF and GB models and combines them with
linear effects. This approach provides readable rule sets and
feature-importance scores, enabling operators to understand
which variables drive predictions and why.

VI. RESULTS

This section presents the results obtained after evaluating
the performance of the Random Forest and Gradient Boosting
models across all tested configurations. We report on predictive
accuracy, training time, inference time, and the results of a
statistical analysis to evaluate the significance of differences
between approaches. In total, 176 experimental runs were
conducted, covering all combinations of models, feature sets,
target variables, and random seeds.

1https://redeipe.rnp.br/home

https://redeipe.rnp.br/home
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Fig. 2: The methodological workflow, describing the data collection and processing steps.

A. Evaluating MAPE and Training Time
Table I presents the MAPE and the training time along

with its standard deviation across 11 runs (each run with a
random seed used for splitting the dataset into test-train) for
each model-feature combination and target metric. The MAPE
is calculated relative to the target’s variation since the last
measurement. Overall, both RF and GB deliver comparable
accuracy, with only minor performance gains observed when
additional RTT/Traceroute features are incorporated. RF tends
to require substantially longer training times (tens to over one
hundred seconds), while GB typically completes training in
under one second for most cases. This disparity highlights
GB’s advantage when rapid model retraining or frequent up-
dates are required. Furthermore, Table I also shows the target
metrics obtained using a simple arithmetic average method,
as a referential baseline. It can be observed that the trained
models outperform the baseline, although further studies are
required to assess its real-world meaningfulness and practical
impact, as discussed in Section VII.

B. Feature Importance
As discussed previously, the prediction interpretability is

the main target of the running experiments, and it can be
enhanced through the estimation of the importance of the
features. We conducted a comprehensive feature importance
analysis to identify the most critical factors influencing the
prediction of subsequent Dynamic Adaptive Streaming over
HTTP (DASH) measurements. The analysis revealed that the
following features are the most significant:

• rates_mean: The average bitrate of all 10 historical
DASH measurements.

• dash_last_rate: The average of the most recent
DASH bitrate measurement.

• rates_stdev: The average standard deviation of the
10 historical DASH bitrate measurements.

• dash_last_rate_std: The standard deviation of the
most recent DASH bitrate measurement.

• dash0_rate_mean: The mean bitrate of the oldest
DASH measurement.

• client_server_id: An identifier representing the
specific client-server combination.

• rtt0_mean: The mean Round-Trip Time (RTT) of the
first measurement conducted in MonIPÊ.

Figure 3 illustrates the feature importance results for
the t + 1 DASH prediction, comparing both enriched
and base datasets for mean and standard deviation
forecasting. Overall, the models consistently rely on
rates_mean and dash_last_rate for predicting fu-
ture bitrate measurements, with supplementary contribu-
tions from client_server_id, dash0_rate_mean,
and rtt0_mean in enriched feature sets. These findings
provide a more comprehensive understanding of which factors
most significantly impact DASH performance, guiding future
refinement and feature engineering strategies for improved
predictive accuracy.

Table I also reports the average inference time for single pre-
dictions across various model and feature set configurations,
aggregated over 11 independent runs. Notably, all models
achieved inference times below 1 ms, demonstrating excep-
tional efficiency suitable for real-time applications. Both RF
and GB models exhibited low computational overhead, affirm-
ing their viability for online adaptation in Dynamic Adaptive
Streaming over HTTP (DASH) systems. The minimal standard
deviations indicate consistent performance across multiple ex-
ecutions, ensuring reliable responsiveness in latency-sensitive
environments.

1) Gradient Boosting Models Explainability: Looking at
the feature rules extracted from the trained Gradient Boosting
models by RuleFit using the mean_1 feature, we observe that
the features dash_last_rate and dash9_rate_mean
appear consistently as the most important to the model predic-
tions with a coefficient of impact on the linear regression of
approximately −19, 000 and −10, 000 in both datasets. The
impact of these model features is coherent with the feature
importance obtained. Features such as rates_mean and
dash8_rate_mean also appeared in the top five important
features globally. The impact coefficient for rates_mean
had a positive impact on the predicted bitrate values, as
opposed to the impact of the last dash rates obtained, being the
impact of dash8_rate_mean slightly smaller than that of
dash9_rate_mean, possibly being a dilution of importance



TABLE I: Aggregated MAPE, Training Time, and Inference Time for RF and GB models, under all runs over both feature
configurations: Base (Table Ia) and Enriched (Table Ib). N/A −→ Not Applicable

Model Target MAPE Train Time (s) Inference (ms)

GB mean 1 3.64 ± 0.88 2.34 ± 0.37 0.18 ± 0.02
GB mean 2 6.24 ± 3.49 3.02 ± 0.80 0.17 ± 0.01
GB std 1 2.86 ± 0.50 2.24 ± 0.22 0.22 ± 0.01
GB std 2 3.33 ± 0.97 2.37 ± 0.66 0.22 ± 0.01
RF mean 1 3.60 ± 0.70 2.87 ± 0.62 0.33 ± 0.03
RF mean 2 5.85 ± 2.76 6.72 ± 0.73 0.38 ± 0.02
RF std 1 2.97 ± 0.54 2.70 ± 0.67 0.26 ± 0.02
RF std 2 3.46 ± 0.89 1.19 ± 0.12 0.27 ± 0.01

Arithmetic
Average

mean 1 5.59 ± 0.52

N/A N/Amean 2 11.07 ± 2.50
std 1 4.40 ± 0.51
std 2 3.90 ± 0.29

(a) Base Feature Configuration

Model Target MAPE Train Time (s) Inference (ms)

GB mean 1 3.72 ± 1.14 4.60 ± 1.12 0.26 ± 0.03
GB mean 2 6.11 ± 3.15 5.05 ± 0.89 0.17 ± 0.02
GB std 1 2.87 ± 0.49 2.98 ± 0.65 0.33 ± 0.03
GB std 2 3.32 ± 0.92 2.99 ± 0.54 0.32 ± 0.03
RF mean 1 3.69 ± 1.14 1.41 ± 0.20 0.32 ± 0.02
RF mean 2 6.36 ± 3.49 9.02 ± 1.85 0.98 ± 0.01
RF std 1 3.03 ± 0.52 2.65 ± 0.53 0.28 ± 0.01
RF std 2 3.27 ± 0.80 1.52 ± 0.13 0.28 ± 0.01

Arithmetic
Average

mean 1 5.59 ± 0.52

N/A N/Amean 2 11.07 ± 2.50
std 1 4.40 ± 0.51
std 2 3.90 ± 0.29

(b) Enriched Feature Configuration
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(a) mean1 and mean2 feature importances with enriched feature set.
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(b) std1 and std2 feature importances with enriched feature set.

Fig. 3: Feature importances for bitrate mean variation and standard deviation at t + 1 and t + 2 using enriched dataset. The
base dataset performed similar to it’s enriched counterpart.

TABLE II: Kruskal–Wallis H-test for MAPE distributions
across model–feature configurations.

Target H p-value Significant? (α = 0.05)

mean 1 0.0821 0.9938 No
mean 2 0.2849 0.9628 No
std 1 0.8250 0.8434 No
std 2 0.5516 0.9074 No

as they get farther in time from the prediction. This suggests
that the model is learning to capture temporal bitrate dynamics
to identify patterns in bitrate progression, such as gradual
rises due to motion buildup or sudden drops following static
content.

Aside from the linear type metrics, it generated rules for
dash_last_rate that were fairly different between the
datasets. The rule generated on the Base dataset was able
to cover 2% of the data points with the following rule:

dash_last_rate ≤ −2.631, while the generated rule on
the Enriched dataset had a coverage of 97% of the data
points, and was approximately the inverse of the previously
presented rule. Aside from that, on the enriched dataset,
the dash0_rate_mean was also a feature with a global
importance on the top five of the linear rules, with a positive
coefficient impact of 5.000.

Switching to the results of the Gradient Boosting Mod-
els for the mean_2 features, the aforementioned trends
are maintained, but the absolute value of the coefficient
of dash_last_rate drops by about 8, 000, decreasing
its negative impact on the outcome prediction. While the
dash9_rate_mean coefficient had a less noticeable in-
crease in its absolute coefficient value of 5, 000 in the Base
dataset, and remained the same in the Enriched dataset. A
similar rule, coefficient and coverage were found for the
dash_last_rate, but now a rule for dash9_rate_mean
that had a scope of 98% of the data points and a relatively high



importance was found, of dash9_rate_mean > −2.224.
As for the standard deviation Gradient Boosting models,

in both t + 1 and t + 2, the models trained on the Base
dataset preserved the use of the dash rate values, but using
their standard deviation values. Furthermore, the trend in
coefficient impact was maintained, newer DASH values had
a negative impact and older DASH values a positive impact.
Lastly, on this dataset, no rule with a high importance had a
scope of data greater than 1%. As for the Enriched dataset,
the feature tr0_rtt_stdev was added in place of the
dash0_rate_stdev, when compared to the Base dataset,
but also having a positive coefficient impact.

This might indicate that the models struggled more to
identify local rules that generalized well across the ensemble’s
predictions, possibly relying instead on the global impact
of individual features. Nevertheless, it is important to note
that although the extracted rules had low sample coverage,
they still exhibited a high importance, which may suggest
that such rules were capturing patterns associated with rare
but influential cases—potentially indicating relevance to data
outliers or extreme behaviors within the dataset. Furthermore,
the overall importance values decreased from the mean-based
models to the standard deviation based ones. Given that the
underlying datasets were the same, the fact that the top rule
in the standard deviation models had a considerably lower
importance score suggests an increased difficulty in extracting
informative rules, which reinforces the previous hypothesis of
the model’s learning struggles. Lastly, the lack of statistical
difference between the Base and Enriched models can also
be seen by the extracted rules, in both the mean and standard
deviation trained models, as the top features are mainly DASH
features.

2) Random Forest Models Explainability: Now analyz-
ing the feature rules extracted from the trained Random
Forest models by RuleFit, in both datasets analyzed, using
the mean features, there was a similar trend to that ob-
served in the Gradient Boosting, with dash_last_rate
and dash9_rate_mean being again the features with the
most importance, with comparable values of coefficient of
impact in the mean_1 Random Forest model as compared
to the Gradient Boosting. As for the rules made in the mean
models, the Base mean_1 model first generated rules focused
on those features individually, such as dash_last_rate ≤
−2.631 with a coefficient value of 28, 468.28, although it
presented a small percentage of coverage, of only 2%, its
importance remained high, which could indicate that this
rule could be pointing to outlier samples. Another feature
rule was dash9 rate mean > −2.186 with a coefficient of
−20, 097.53 and a support value of 97%, reaching most of the
sample data points, comparable to what was observed in the
Gradient Boosting mean_1 model. In the Enriched dataset,
the support coverage for these rules was inverted compared to
the Base dataset, with both rules being fairly similar.

Moving to the results for the mean 2 features, the absolute
value of the coefficient of dash_last_rate was again
decreased by about 3, 000 in the Base dataset and 9, 000

on the Enriched dataset. Contrary to the increase observed
in the Gradient Boosting model, the dash9_rate_mean
also had a decrease from the mean_1 to mean_2 features
in about 4, 000 in both datasets. As both of them have a
decrease in overall impact on the model’s prediction and they
were considered the most globally important features, that
might indicate that the Random Forest model is struggling
more to use the presented features for predictions made in
a farther future. A key difference observed in the mean_2
features model on the Enriched dataset is the importance of
rtt0_mean feature, with a linear coefficient of −3, 224 but
with a relatively low importance.

In the standard deviation model for t + 1, in the Base
dataset, the dash_last_rate was dropped from the feature
importance podium, while in the Enriched dataset, it began
to have a positive coefficient impact. Once again, with this
set of features, no extracted rule had coverage in more than
1% of the data. Lastly, no substantial difference between the
Random Forest models trained on standard deviation features
from time t+1 and time t+2, in terms of the rules extracted,
were observed.

VII. CONCLUSION

In this study, we demonstrated the feasibility of a highly
interpretable ML-enhanced DASH architecture designed for
proactive bitrate adaptation. The primary goal was not to
maximize predictive accuracy, but to validate a transparent
framework suitable for real-world deployment. Consequently,
the core contribution of this work is a reusable interpretability
framework that enables trustworthy ABR strategies, rather than
a set of specific prediction rules.

Our experiments on the Rede Ipê academic backbone con-
firmed the approach’s viability: with inference times below
1 ms and rapid training cycles, both Random Forest and
Gradient Boosting are suitable for near real-time use. The
best models achieved a MAPE of approximately 3.6 when
forecasting mean bitrate and 2.8 for its standard deviation.
Our analysis also revealed that while enriching the feature set
with RTT and traceroute data provided modest improvements,
the difference was not statistically significant, with historical
DASH metrics remaining the dominant predictors. Ultimately,
our findings highlight that the choice between these models
depends less on marginal performance gains and more on
practical deployment constraints, such as hardware limitations
and specific interpretability requirements.

Both Random Forest and Gradient Boosting demon-
strated reasonable performance: training times for most
model–feature combinations were under one second, and in-
ference times remained below 1 ms per instance, confirming
suitability for near real-time deployment. Furthermore, our
RuleFit-based explainability pipeline (Section VI) produced
detailed feature-importance rankings, reinforcing the value of
interpretable predictors. By combining network-path metrics
with historical bitrate data, content providers can proactively
adjust streaming parameters to reduce buffering events and
enhance video quality.



Overall, the findings highlight the practical balance be-
tween model complexity and computational demands: both
Random Forest and Gradient Boost offer swift inference and
comparable accuracy. Consequently, the choice between these
approaches may depend more on specific deployment con-
straints—such as prediction time windows length, hardware
limitations, and interpretability degree requirements than on
any notable differences in predictive performance.

A. Limitations

This study has two main limitations. First, the proposed ML
methods depend on high-quality labeled data and face chal-
lenges in generalizing across diverse network conditions and
user behaviors [19]. Second, our work deliberately focused on
validating the interpretability framework on a realistic dataset
rather than on its end-to-end QoE impact. Consequently, we
did not integrate the predictive hints within a client-side ABR
algorithm, leaving the experimental demonstration of concrete
QoE improvements as an important direction for future work.

B. Future Work

Future work should focus on deploying the proposed frame-
work within a real-world DASH client to quantitatively eval-
uate its impact on user satisfaction and playback quality.
Integrating these server-side prediction hints with client ABR
algorithms is the immediate next step for concrete QoE-
optimization studies. In parallel, prediction accuracy could be
enhanced while preserving interpretability by incorporating
new features—such as jitter, instantaneous bandwidth esti-
mates, and user-centric metrics—or by exploring alternative
ML models on expanded datasets. A broader research direction
involves leveraging these interpretable insights for adaptive
networking, enabling servers to dynamically reconfigure net-
work paths or resource allocations to improve streaming
performance.

DATA AND CODE AVAILABILITY

The codes for all the models discussed in this work, as well
as the datasets used for training them, are available in the fol-
lowing online repository: https://github.com/eduardoperetto/
AI-data-challenge. In addition, the original dataset provided by
the RNP is available at the following link: https://dadosderede.
rnp.br/dataverse/datachallenge.

ACKNOWLEDGMENT

Our research and the preparation of this article were funded,
both intellectually and financially, by Rede Nacional de Ensino
e Pesquisa (RNP), through the Comitê Técnico de Monitora-
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