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Abstract—The analysis of microarrays has the potential to
identify and predict diseases predisposition, such as cancer,
opening a new path to better diagnosis and improved treatments.
Additionally, microarrays can help to find genetic biomarkers,
which are genes whose expressions are related to a specific disease
stage or condition. But due to the huge number of genes present
in microarray experiments, and the small number of available
samples, computational methods that deal with such techniques
need to overcome difficulties in both classification and feature
selection tasks. This paper presents adaptations for the use of
FS-NEAT, an evolutionary algorithm that creates and optimizes
neural networks through genetic algorithms, as a tool that can
satisfactorily perform both tasks simultaneously and automati-
cally. The method is tested with a Leukemia dataset containing
six imbalanced classes, compared with other classifiers, and the
selected genes are biologically validated.

I. INTRODUCTION

Microarrays are arrays experiments designed for nucleic-

acid hybridization [1]. Each microarray experiment requires a

special chip, with thousands of probes, where each of these

probes contains a nucleic acid sequence. Usually, microarrays

function as a tool to identify expression of genes present

in a given biological sample, derived from RNA extrac-

tion of a target tissue or cell culture. In this sense, target

RNAs are codified to complementary DNA (cDNA) using the

Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR)

technique, which will then hybridize with the nucleic acid

sequence of the probe and emit a signal that can be translated

as a wavelength, indicating if the target gene is present in a

given sample or not [1], [2]. Microarrays have been used to

analyze a wide variety of diseases, such as cancer [3], [4], [5],

[6]. However, despite their enormous potential, microarrays

require the use of Bioinformatics tools to analyze and give

sense to the large amount of biological data [7], [8], [9].

A common application of microarray data in Bioinformat-

ics is its use for the creation of classifiers in the hopes

of future use in medical diagnosis. Using gene expression

profiles of predefined sample groups, for example, a control

group and a disease group, it is possible to train supervised

learning methods to assign to a new sample its correct label.

This approach has great potential in clinical diagnostics and

has been successfully tested with different algorithms in the

last decades [10]. Different studies have already tested the

efficacy of several machine learning techniques in the task

of microarray classification with different datasets, exploring

methods such as artificial neural networks (ANN), support

vector machines (SVM), k-nearest neighbors (k-NN), and

random forest (RF) [11], [12], [13], [14].

Another important aspect of working with microarray data

is dimensionality reduction. Known as the ”curse of dimen-

sionality”, this major concern refers to when the data has

a large number of dimensions, which is associated with

overfitting [15], increased computational run time and memory

consumption, and interpretability impairment. Datasets with

many dimensions but a small number of samples are also

affected by the ”large p, small n” problem, that is often the

case with microarray data. Machine learning algorithms, deep

learning especially, rely in sets with thousands or even millions

of samples, what can be considered a rarity with this kind of

data.

Since the number of samples from microarray datasets is

lower than the available number of genes (features), dimen-

sionality reduction is a fundamental step of the process [16].

While popular methods of feature extraction, like principal

component analysis (PCA), could be used, it is desirable that

the selected features are not a combination of the dimen-

sions of the data, but the dimensions themselves (e.g., the

expressions of single genes). Thus, it is possible to reduce the

number of features while also retrieving the information of

which genes have a greater impact in the classification, finding

genes that could have a high probability of being associated

to a given disease.

The group of algorithms capable of performing this dimen-

sionality reduction by selecting subgroups of features from the

whole data is known as feature selection (FS) and comprises

several methods that remove irrelevant, redundant or noisy

features. FS has the advantage of providing a more satisfactory

interpretation of the results [17], and decreasing computational

cost, besides improving the accuracy of different classification

methods [18].

Many FS models were proposed for microarray data, that is

often noisy and contain irrelevant and redundant expressions.

One example is the Minimal Redundancy and Maximum

Relevancy (mRMR), a method based on Mutual Information

(MI) as a measure of relevancy and redundancy, where the

redundancy of a feature subset is the aggregate MI measure

between all pairs of features in the subset, and the relevancy

is the aggregate MI measure between all features and one

specific class [19]. This algorithm has already been applied

to genomic data [20], [21]. A complete review on the topic

of FS and microarray can be found in the work of Ang et
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al. [22]. Nevertheless, this remains an open problem, with a

large variety of new algorithms arising [23], [24], [16].

Besides the computational benefits, FS has the potential to

aid biomarkers identification research by finding the subset

of genes that best represents the whole data and increases the

classification accuracy. In a nutshell, biomarkers are biological

signatures found in tissues or body fluids, that can be used

to identify a particular pathological or physiological process.

There are several types of biomarkers, derived from a broad

range of biomolecules, such as DNA, RNA, proteins, miRNA,

among others. These molecules can be used for cancer de-

tection, diagnosis, prognosis, treatment choice, or identify

tumours stage [25]. The gene expression data derived from

microarray experiments can aid in the identification of genes

electable as possible biomarkers since microarray technology

made possible the analysis of large datasets derived from

various biological experiments [26].

Among the promising methods of Artificial Intelligence

and Machine Learning that can be applied in the tasks of

classification and FS, stands Evolutionary Computation (EC).

EC borrows key concepts from evolutionary biology, such as

inheritance, random variation, and selection, and adapts them

to solve computational problems. EC has been used for a wide

range of applications, Bioinformatics among them, and has

many important benefits over popular deep learning methods.

It does not require a large amount of data to solve a problem, is

easily parallelized, and can give solutions based on any fitness

function [27]. EC can also work well in hybrid frameworks

with other machine learning algorithms [27]. For instance,

Neuroevolution is a family of training methods for neural

networks to obtain theirs weights, bias, and overall topology

by using EC [28]. One example is the NeuroEvolution of Aug-

menting Topologies (NEAT) [29] that incorporates Genetic

Algorithms (GA) into training.

This kind of evolutionary or constructive ANN has already

been tested for the classification of microarray data. Garro et
al. made a study combining Artificial Bee Colony (ABC) for

FS and ANNs designed by Differential Evolution (DE) for

classification. The ABC algorithm was used to select a more

useful set of genes to discriminate a disease subtype, and this

was used as input in neural networks created with DE that

were free to choose their topology and activation functions.

The method was tested in a Leukemia DNA microarray dataset

with two classes (AML and ALL), 38 bone marrow samples,

and 6817 human genes [30]. Another study by Luque-Baena et
al. uses a genetic algorithm and C-Mantec (Competitive

Majority Network Trained by Error Correction), a neural

network constructive algorithm, to select a predictor profile.

The approach was tested in six cancer databases [31]. Both

methods, however, depend on other algorithms to perform

the gene selection before the classification, and on human

knowledge to define the number and criteria of selected genes.

In this sense, the NEAT algorithm is an interesting option

to be explored due to its automaticity and extensibility. Using

GA to create ANNs from minimalist topologies, it grows the

network structure adding hidden nodes and connections. More

important is that NEAT can be expanded to perform FS while

evolving its networks for the classification problem. Feature

Selective NEAT (FS-NEAT) is a good example because it

starts with networks without any connection and lets the evo-

lutionary algorithm choose which inputs should be connected

to the other nodes [32]. This kind of technique can be applied

to microarray classification problems - at the same time that it

learns how to classify new samples, it selects the fundamental

genes for the task that can be then submitted to a biological

validation.

The main contribution of this paper is the design of a

method capable of automatically performing microarray classi-

fication and gene selection at once, with the aim of identifying

new biomarkers for diseases, and new ways to use FS-NEAT

for the task of classifying imbalanced class datasets. This

approach was evaluated with a multiclass Leukemia dataset

and compared with other popular classifiers: MLP, SVM, and

decision tree. We also present a biological validation of the

selected genes obtained through our method, to check if the

results match the biological studies. In summary, this paper is

organized as follows: Section II reviews the technologies and

algorithms used in the proposed method; Section III details the

new algorithm for classification and gene selection; Section

IV presents the experiments and analysis of the results; and

Section V discusses the work and future improvements.

II. MATERIALS AND METHODS

A. NEAT

Usually, when working with ANNs, a fixed topology (e.g.,

number of nodes, layers, and connections) is chosen, and

the weights and biases of the network are determined by an

algorithm such as backpropagation [33]. One of the issues

that arise from this approach is how to find the best topology

for a given problem since this structure can have a great

impact on the learning performance of the network and its

final accuracy. This can be a challenge in Bioinformatics since

many of the concepts underlying biological process are only

partially known [34].

NeuroEvolution of Augmenting Topologies (NEAT) is an

algorithm that addresses this problem by creating and evolving

ANNs using GA [29]. It is not only capable of automatically

finding values for weights and biases, but also the overall

topology of a network. It starts by setting a population in

which individuals are ANNs sharing the same minimal topol-

ogy, i.e., input and output neurons fully-connected without

hidden nodes and with random weights. The minimalist start

is employed to assure that only additions to the topology of a

network that were beneficial to its results will be kept, barring

useless complexity.

New populations are created iteratively from this first pop-

ulation with traditional GA operators. The crossover operation

selects two individuals from the current population, generating

a new individual that is a combination of both. The mutation

operation can change the values of the network weights, or add

new hidden nodes or a new connection between existing nodes.

It can also flip a ”disable” bit that activates or deactivates a
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connection. These operators are how the topology of the ANNs

grows and complexifies over the generations of the GA [29].

The main challenge of implementing this method is that

the crossover operation can create defective ANNs when

combining two random individuals, since their topologies

may not allow a direct exchange of connections and nodes.

To solve this problem, NEAT uses a historical marking - a

numerical value assigned to new pieces of structure, like a

new connection, found through the modifications. This value

is determined linearly by when in the evolutionary process

the new structure first appeared and is passed as it is to new

individuals during the crossover. Hence, NEAT is capable

of perfectly matching the same structures in two different

topologies by aligning the ones with equal historical markings,

creating a new functional ANN that has the same building

blocks of its predecessors. Fig. 1 illustrates how the genome

codification of NEAT translates to a functional ANN.

Fig. 1: Genome representation for an individual in the NEAT

population. The bold number in the top line of each gene is

the historical marker used to identify new structural transfor-

mations. The second line informs the link between two nodes.

The third line is the disable bit (DIS) that when active means

that the corresponding connection is ignored. Adapted from

Stanley and Miikkulainen [29].

Adding new structure to an ANN without optimizing its

weights and biases is usually disadvantageous to its results,

making it difficult for an evolutionary algorithm to select

individuals with new topologies. In contrast, to give individ-

uals the time to adapt instead of just discarding them when

they first show up, NEAT adopts speciation (or niche), and

the individuals compete only within groups of similar ANNs.

The individuals are divided into niches using the historical

markings. For a complete description of NEAT, please refer

to Stanley and Miikkulainen [29].

B. FS-NEAT

The evolutionary and constructive model of NEAT has been

explored for the task of FS by several studies [35], [36],

[37]. In this sense, one of the principal algorithms is FS-

NEAT [32], that although simple has shown to have good

performance in FS [38], [39], [40]. Being an extension of

NEAT, FS-NEAT takes advantage of all the innovations of

that method but changes the original population initialization.

The minimalist start of NEAT is not as minimalist as it could

be and assumes that all available inputs are useful by starting

with fully connected networks.

For many datasets, however, this is not the case, and some

of the inputs do not contribute to the desired behavior of the

ANN. FS-NEAT addresses this problem by connecting, in each

individual, one random input to one random output, instead of

creating a fully connected topology, as can be seen in Fig. 2.

The algorithm then behaves like regular NEAT. These minimal

ANNs will most certainly lack the needed structure to have

good performance, but the evolutionary algorithm will guide

the complexification towards ANNs with the best set of inputs,

topology, and weights. Finally, in the end, inputs not connected

to an output are discarded. This way, FS-NEAT is capable

of simultaneous and automatically performing FS and evolve

neural networks, without requiring meta-learning, labeled data,

or human expertise. By using only a subset of all the inputs,

FS-NEAT is also often less costly than regular NEAT.

(a) NEAT

(b) FS-NEAT

Fig. 2: Examples of initial network topologies for (a) NEAT

and (b) FS-NEAT. In regular NEAT, the initial networks have

input and output layers fully connected, while in FS-NEAT,

the initial population has networks with one link connecting

a randomly selected input and a randomly selected output.

Adapted from Whiteson et. al [32].

III. PROPOSED METHODOLOGY

We use the concept of FS-NEAT to develop a method to

simultaneously solve the problems of microarray classification

and gene selection and to create new network topologies that

can be inspected for more insights about the data. Further-

more, FS-NEAT has the promising feature of selecting genes

automatically, without the need for human set thresholds on

how many genes to choose or for a filter method before the

main algorithm. We start with a preprocessing step in which

the microarray data is standardized according to Equation 1,

2018 IEEE Congress on Evolutionary Computation (CEC)



where x is a feature, and μ and σ are the mean and the standard

deviation of that feature over all the samples, respectively. The

labels of each sample are one-hot encoded, so for a problem

with Q different classes, each class is encoded as an array

of Q elements set as zero, except the element with an index

corresponding to that class, that is set as one.

xnew =
x− μ

σ
(1)

As already discussed, FS-NEAT uses GA to evolve ANNs

from minimalist topologies. The initial population is created

without hidden nodes and connecting random input neurons to

random output neurons. In this case, the input neurons are the

genes expressions (after the standardization), and the output

neurons are the classes. The first set of weights and biases

is randomly determined from a distribution with mean equals

zero, and standard deviation equals one. The outputs from the

neural networks also pass through a softmax layer, described

by Equation 2, that scales an array Z with length p and returns

the array φ(Z) with positive elements and sum equal to one,

in which e stands for the Euler’s number. At the end of the

evolutionary process, given a set of genes expressions, this

pattern is classified as the class corresponding to the output

neuron that produces the larger value. A gene is considered

”selected” by the neural network when its input node has a

direct or indirect (through hidden nodes) connection to one or

more output nodes.

φ(Z) =
eZi∑p
i=1 e

Zi
(2)

As in most evolutionary algorithms, a cost function (or

fitness) is needed to evaluate the models and guide the

optimization process. A popular cost function for supervised

classification tasks, the cross entropy, was chosen. Cross-

entropy compares the softmax outputs from a neural network

with the one-hot encoded classes that would represent the

correct answer to a given set of input and averages the

differences. This is the expression between curly brackets

in Equation 3a, in which n is the number of samples, p
is the number of outputs, y are the desired outputs, and a
are the outputs from the model. Note that this expression

is nonnegative. Since many microarray datasets have many

imbalanced classes, there is a large risk for the model to not

learn correctly how to classify the classes with fewer samples,

giving more importance the larger classes. To work around

this problem, we added the rest of the Equation 3a, where q
is a class, nq is the number of samples of the class q, yji is

the jth element of the ith sample of the desired output from

class q, and aji is the jth element of the ith output from the

network from class q, so the cross entropy cost is computed

for each class individually and is then summed, so all classes

have the same contribution to the final cost, regardless of the

number of samples.

Another major concern is overfitting, which happens when

the model performs well on the training data, but fails to gen-

eralize and has poor performance when faced with new data.

One way to avoid this problem is to expand the dataset, which

regarding microarrays would mean to make new experiments,

what is expensive and not always possible. A variation of

this, popular with image datasets, is the addition of artificially

generated data, that are often real samples slightly modified.

This approach, however, is not advised when dealing with

experimental data, since it would add arbitrary changes to

values that should represent a real-world phenomena.

L2 regularization, also known as weight decay, is another

commonly used technique to mitigate the problem of over-

fitting [41]. Its effect is to make the optimization prefer

networks with smaller weights, what make simpler models,

usually capable of better generalization. This is the term in

Equation 3b, with n being the number of samples, c the

number of connections, wk the weight of connection k, and

λ the regularization parameter, that must be a positive value

set by the programmer. The term 1
c did not come from the

canonical L2 regularization but was added since we are dealing

with FS-NEAT and the number of connections is not fixed, and

without it, the regularization would have an undesirable impact

in the addition of new links. The cost function to be minimized

by the evolutionary process is the sum of the cross-entropy

cost and the L2 regularization, defined by Equation 3. Also

relevant is the fact that, due to its minimalist start, FS-NEAT

does not demand a component in the cost function dealing

with the minimization of the number of features selected, like

the one present in [31].

∑
q

⎧⎨
⎩−

1

nq

nq∑
i=1

p∑
j=1

[yji ln aji + (1− yji) ln(1− aji)]

⎫⎬
⎭ (3a)

+
λ

2n

1

c

c∑
k=1

w2
k (3b)

Finally, it is needed to address the structure of the individual

neurons of the neural networks. All hidden and output neu-

rons added by the evolutionary algorithm follow the formula

presented in Equation 4. It is a standard model for artificial

neurons, where yh is the output, mh is the number of inputs

of the neuron, whj is the weight of the input j, xj is the input

j, and bh is the bias of the neuron h, respectively.

yh = max(0,
1

mh

mh∑
j=1

whjxj + bh) (4)

There are two main considerations to be made about Equa-

tion 4. The first one is that the neurons in our method use the

rectified linear unit (ReLU) [42] as activation function, which

has been found useful in many deep learning applications. The

second is that the aggregation function is not the summation,

as it is commonly used in neural networks, but the mean,

hence the 1
mh

component in the formula. This choice was

made to provide more stability during the learning process

since, unlike a MLP or deep learning model, the number of

inputs of a neuron in FS-NEAT can change over time. The
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use of the mean instead of the summation causes less abrupt

modifications in the output of the neuron when a connection is

added, smoothing the initial impact of these transformations.

Regarding the GA that evolves the neural networks, it

uses the crossover and mutation operators. The mutation can

add a new node, add a new connection between nodes, and

change the network weights, besides flipping the disable bit.

The diversity control is obtained through speciation. Because

the topology of the network is also created by the GA, FS-

NEAT provides a way to inspect the existing connections

between artificial neurons, allowing more direct inspection of

the influence of the inputs on the outputs. In the experimental

results, for instance, it is reported how certain genes had a

clear preference for connections to specific classes.

IV. EXPERIMENTS AND RESULTS

The algorithm described in this work was coded in Python

and ran in an Intel Xeon E5-2650V4 30 MB, 4 CPUs, 2.2Ghz,

48 cores/threads, 128G, 4TB. In order to test our method,

we used the data described by Yeoh et al. [43]. This dataset

represents a microarray study of 327 bone marrow samples of

pediatric patients with acute lymphoblastic leukemia (ALL).

By employing an unsupervised two-dimensional hierarchical

clustering algorithm the authors identified six known leukemia

subtypes: (i) T-cell acute lymphoblastic leukemia (T-ALL); (ii)

hyperdiploid (Hyperdip); (iii) BCR-ABL, which is a fusion of

two genes, BCR and ABL, in chronic myelogenous leukemia

(BCR); (iv) E2A-PBX1, which is also a fusion between two

genes, normally related to adult ALL (E2A); (v) TEL-AML1,

that, similarly to the previous two types, is a gene fusion,

frequently found in childhood acute lymphoblastic leukemia

(TEL); and (vi) Mixed-lineage leukemia (MLL). The details

of the dataset are presented in Table I. This data can be found

at the Cancer Program Legacy from the Broad Institute1.

TABLE I: Detailed description of the Leukemia microarray

dataset used.

Dataset St. Jude Leukemia
Source [43], [44]

Chip type U95
# Features 985
# Samples 248
# Classes 6

Class Name # Samples
BCR 15
E2A 27

Hyperdip 64
MLL 20

T-ALL 43
TEL 79

Since the data is composed of six different classes, this

is a considerably harder problem than binary classification,

as it is the case of datasets divided into samples with a

condition or without it. The difference in the size of each

class also motivates the formulas chosen in the last Section.

Following our method, the data was standardized and classified

1http://portals.broadinstitute.org/cgi-bin/cancer/publications/view/87

by FS-NEAT with the parameters listed in Table II. To get

the accuracy of the model we used stratified 10-fold cross-

validation, in which the data was divided into ten folds that

preserve the total distribution of samples by class. For each

iteration of the cross-validation, nine folds were used as

training set, and the remaining one was used as testing set. The

main advantage of cross-validation is an effectively unbiased

error estimate [22]. For each iteration of the cross-validation

the whole FS-NEAT evolutionary process was performed.

TABLE II: List of parameters used for the FS-NEAT evolu-

tionary process in this experiment.

Parameter Value
Population size 2000

Number of generations 200
Aggregation function mean
Activation function ReLU

λ 1.0
Probability of mutation adding connection 0.8

Probability of mutation adding node 0.15
Probability of mutation changing weight 0.05

Probability of mutation flipping disable bit 0.05

We used stratified 10-fold cross-validation to compare FS-

NEAT with other three widely used classifiers for microarray

data: (i) MLP with one hidden layer with five nodes, (ii)

SVM with RBF kernel, and (iii) CART decision tree [45]. The

accuracy of each classifier is reported in Table III, with the av-

erage and standard deviation number of features selected when

applicable. FS-NEAT was close to the dedicated classifiers,

SVM and MLP, and showed a better predictive power than

decision tree, another algorithm capable of selecting features.

All the methods had a far better result than the baseline, that

would be to predict the label of the largest class (TEL) to

all samples. The average number of genes selected by the

neural networks created with FS-NEAT represents a reduction

of more than 98% of the feature space, so the algorithm is

fulfilling its function of dimensionality reduction as well.

TABLE III: Accuracy over the combination of all test sets

and average number of selected features (when applicable)

with standard deviation for different algorithms with stratified

10-fold cross validation.

Method Accuracy Selected features
Baseline 0.32 -

MLP 0.97 -
SVM 0.99 -

Decision Tree 0.83 11.30 ± 1.16
FS-NEAT 0.96 15.50 ± 2.07

The accuracy of FS-NEAT is further detailed in Table IV,

a confusion matrix that discriminates the errors by class using

the results from the sum of the results from each test set in

the stratified 10-fold cross-validation. The diagonal shows the

number of correctly classified samples for each class. As can

be seen, despite the great imbalance between classes, none of

them was poorly classified.

After the predictive power of the algorithm was validated,

we evolved 235 artificial neural networks with FS-NEAT using
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TABLE IV: Confusion matrix expanding the accuracy results

of FS-NEAT from Table III. Each row corresponds to the true

label of the leukemia classes, and each column corresponds

to the predicted labels by the evolved neural networks. The

numbers in the diagonal indicate how many samples were

correctly predicted by the neural networks.

True\Prediction BCR E2A Hyperdip MLL T-ALL TEL
BCR 12 0 2 1 0 0
E2A 0 27 0 0 0 0

Hyperdip 2 0 61 0 0 1
MLL 0 0 2 18 0 0

T-ALL 0 0 0 0 43 0
TEL 1 0 0 0 0 78

the same set of parameters as before, but this time with all

available samples, to analyze the genes being selected. The

need for this battery of tests is due to the stochastic nature

of FS-NEAT, that may present variable results because of

the randomness built into the system. An example of neural

network created through this method is shown in Fig. 3.
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Fig. 3: Example of an ANN created with FS-NEAT using the

data from the leukemia dataset. Rectangles are input nodes

associated to a specific gene, white nodes are hidden nodes,

and colored nodes are output nodes associated to a specific

subtype of leukemia. The arrows are connections, with their

thickness proportional to the absolute value of their weights.

The list of most frequently selected genes by these networks

is presented in Table V. For these genes, their connection with

the leukemia subtypes in the generated networks (the presence

of direct or indirect connections between the corresponding

inputs and outputs) was fairly strong. The most frequent genes

always appeared linked to the same subtypes, reinforcing the

idea that the networks are indeed encoding possible relations

between gene and disease. The apparent low frequency of

the genes, for instance 67 for GLUT5 in 235 networks,

may be justified by the presence of redundancy and repeated

genes under different alias since there are more than one

probe for some genes. The sixth most selected gene, with 40

occurrences, was c-ABL, a different alias for the gene ABL.

The same happens with the ninth most selected gene, with 37

occurrences, PBX1a, an alias of PBX1. The networks were

able to deal with this by not selecting repeated genes, leading

to this ”fragmented” frequencies. Even then, the results with

the alias are coherent, as both are appearing in the top ten,

and ABL and c-ABL were always connected to the subtype

BCR in the networks, while PBX1 and PBX1a were always

connected to the subtype E2A. It is also worth noting that the

probability of a gene being randomly selected by a network is
1
n , n being the number of genes, so in this dataset, it would

correspond to 1
985 ≈ 0.001. Since the average number of genes

by network is 15.5 as detailed in Table III, if the networks were

being randomly assembled, for our test with 235 networks we

would expect a frequency of 4 occurrences per gene, since

0.001 × 15.5 × 235 ≈ 4, far less than the frequencies listed

in Table V. This indicates that the genes are indeed being

selected due their capacity to better discriminate the data.

TABLE V: The top five most frequently selected genes for the

leukemia dataset, with indication of which subtype they were

linked to in the networks.

Frequency Accession number Gene Most linked subtype
67 34362 at GLUT5 BCR
64 33355 at PBX1 E2A
60 40763 at MEIS1 MLL
55 1636 g at ABL BCR
47 37600 at ECM1 BCR

The biological validation shows that the top five genes

with the highest frequency among the different studied classes

of leukemia were consistent with biological data. The most

frequent gene linked to the BCR subtype was the Glucose

Transporter-Like Protein 5 (GLUT5). Interestingly, GLUT5

was seen to be overexpressed in acute myeloid leukemia

(AML) [46]. AML mice showed increased GLUT5 expression

in the bone marrow, and in vitro AML-derived human cells

also displayed higher expression of GLUT5 [46]. Moreover,

consistent with biological data, the Pre-B-Cell Leukemia Tran-

scription Factor 1 (PBX1) was the most frequently linked gene

to the E2A type. The E2A-PBX1 gene fusion is frequently

seen in patients with ALL, ALL of the central nervous system,

and recently was also seen in gastric carcinoma [47], [48],

[49]. Furthermore, the Meis Homeobox 1 (MEIS1) is the most

frequently associated gene with the MLL class. In agreement

with this finding, MEIS1 is commonly upregulated in MLL

patients and is directly related to leukemia establishment in

both human and mice, in addition to being related to acute

leukemia [50], [51]. Also consistent with biological logic, the

Proto-Oncogene Tyrosine-Protein Kinase ABL1 (ABL) was

also present as the second most associated gene with the

BCR class. ABL overexpression and its subsequent fusion with

BCR is deeply related to B-cell acute lymphoblastic leukemia

(B-ALL), and chronic myelogenous leukemia (CML) [52]
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and its direct and indirect inhibition are linked to leukemia

treatment [53], [54]. Recently, this protein expression was also

related to Parkinson Disease [55]. The Extracellular Matrix

Protein 1 (ECM1) was the third more frequently associated

gene with the BCR class. Nevertheless, although this gene was

not yet related to leukemia, its overexpression was observed in

patients with papillary thyroid cancer [56], being a promising

candidate for CML or B-ALL studies.

Other genes that appeared among the top ten were also

consistent with biological data and showed promising results,

such as the Killer Cell Lectin-Like Receptor K1 (NKG2D),

which was the second most frequently linked gene with the

MLL class. NKG2D overexpression and signaling are already

related to MLL [57] and ALL by promoting immune system

escape [58]. Finally, in agreement with the scientific literature,

Endogolin (CD105), the fifth most frequently connected gene

to the BCR class, is already related to both AML and CML,

where its overexpression is related to AML progression [59]

and CLL poor prognosis [60].

V. CONCLUSION

This paper described a method for classifying DNA mi-

croarrays and selecting genes from their datasets to achieve

dimensionality reduction and find possible candidates for

biomarkers of diseases. The method explores the FS-NEAT,

an evolutionary approach that uses GA to automatically design

ANNs capable of gene selection without the need for any

human intervention or a priori knowledge. We showed how

FS-NEAT could be adapted for the task of classification of

multiple imbalanced classes, especially by defining the fitness

function and artificial neuron structure.

This method was tested with a leukemia microarray dataset

containing six subtypes of leukemia with a different number

of samples. It achieved 96% accuracy in the stratified 10-

fold cross validation, a result close to traditional classifiers

known to have good performance with microarray data, and

without compromising the classification of any individual

class. Moreover, on average, the feature space was reduced

by 98% without the need to predetermine the desired number

of final genes or to apply other FS algorithms as a first step.

The ANNs created with FS-NEAT are interesting results

by themselves since their automatically designed topology

has the advantage of showing which gene was linked to

which leukemia subtype. The review of the most frequently

selected genes revealed consistency between these results and

the biological data.

This study can be further developed by testing the method

with more datasets and by biologically testing the selected

genes as possible biomarkers. Experiments with larger pop-

ulation and number of iterations of FS-NEAT are also a

possibility. As it is often the case with population-based

optimization heuristics, there is a high computational cost

involved, but FS-NEAT has the advantage of being easily

parallelized, greatly reducing run time. The exploration of

other FS algorithms and filter techniques as a preprocessing

step, while not required, could also be considered in the future.
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