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Perspectives and Applications of Machine Learning
for Evolutionary Developmental Biology

Bruno César Feltes a‡, Bruno Iochins Grisci,a‡, Joice de Faria Poloni b, and Márcio
Dorn ∗a

Evolutionary Developmental Biology (Evo-Devo) is an ever-expanding field that aims to under-
stand how development was modulated by the evolutionary process. In this sense, "omic" studies
emerged as a powerful ally to unravel the molecular mechanisms underlying development. In this
scenario, bioinformatics tools become necessary to analyze the growing amount of information.
Among computational approaches, machine learning stands out as a promising field to generate
knowledge and trace new research perspectives for bioinformatics. In this review, we aim to ex-
pose the current advances of machine learning applied to evolution and development. We draw
clear perspectives and argue how evolution impacted machine learning techniques.

Introduction
Evolutionary Developmental Biology (Evo-Devo) is a broad field
that seeks to understand the developmental relationship among
species, as well as how distinct phenotypes emerged from the evo-
lutionary process1,2 (Fig. 1). Hence, Evo-Devo encompasses dif-
ferent research approaches to elucidate the physiological, molec-
ular, phylogenetic, and phenotypic aspects of development1,3,4.
The molecular branching of Evo-Devo officially arose through a
budding interest in the experimentation with mutants derived
from different model organisms, and kept expanding ever since -
from the classical genetic and molecular experiments to phyloge-
netic and "omic" studies, such as metagenomics, large-scale tran-
scriptomics studies, and next-generation sequencing approaches,
the so-called "Big-data"1,5–9. Due to the inherent complexity of
the developmental process together with the wide scope of Evo-
Devo research interests and the fact that such techniques often
need the aid of computational methods to preprocess and ana-
lyze the massive amount of information, bioinformatics tools be-
come crucial to accelerate and create new knowledge about the
developmental aspects of evolution10.

In the last few years, numerous bioinformatics methods have
been developed and applied to molecular biology to cope with the
continuous advance of DNA, RNA, and protein data11–13. Amidst
the bioinformatics "toolkit" to analyze molecular and large-scale
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data, lies machine learning (ML) techniques. In short, ML is a
field of Computer Science that covers several algorithms capable
of performing tasks without being explicitly programmed. Being
derived from studies of artificial intelligence, pattern recognition,
statistics, and optimization, ML techniques "learn" how to make
predictions or decisions from data alone. Classification of ML by
the tasks or problems it tackles usually divides it into three cate-
gories: (i) supervised learning, that uses methods presented with
data inputs and the known desired outputs, and learn to map one
to another; (ii) unsupervised learning, that promotes informa-
tion discovery and feature learning from data without any previ-
ous labeling, and (iii) reinforcement learning, used for computer
agents that act in dynamic environments trying to maximize their
rewards in order to find a policy14 (Fig. 2).

ML has been successfully employed to analyze a broad range of
biological data, such as microarray15–18, RNA-seq19–21, protein
sequence and structural information22–24, epigenetics25, and ge-
nomic data26–28. The major difference of using ML techniques
to analyze Big-data, over other computational approaches, is its
capacity to extract information from large amounts of raw data
and build structural descriptions that can be used for predictions
and the creation of a new understanding of a given problem29.
As a matter of fact, biology and computer science are long-term
partners, not only from an analytic point of view but also through
the use of metalanguage. For example, the employment of terms
such as "hubs" for Systems Biology, which roughly translates to
"nodes within a network with above average number of connec-
tions"30, or how we refer to multiple centralities parameters in
a biological network, has a strong computational background31.
In many ways, how we think about a biological problem could be
associated with a programming language32–34.
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Fig. 1 A simplified illustration of the study of Evo-Devo, representing the integration of developmental processes and the evolutionary origin of phe-
notypic changes between organisms. The study of development is intrinsically related to the evolutionary process, and evolution-related events,
reproduction, and DNA mutations, deeply impact on how an organism develops and what features will create a higher adaptability on the next gener-
ation. Hence, Evo-Devo studies encompass a wide variety of research topics and interests that aim to outline how development and evolution shaped
the phenotypic variance we witness to this day.

Although ML is already widely explored to analyze Big-data,
its applications not only on Evo-Devo, but in developmental and
evolutionary studies that employ Big-data, are still scarce, the vast
majority we found is from the last three years. Nevertheless, due
to the challenges that these studies face when analyzing different
types of biological data they could be aided by ML techniques.
Thus, the aim of this article is to review the current applications of
different ML techniques in developmental and evolutionary stud-
ies. We extensively searched the scientific literature for works
employing evolutionary and developmental data, or their com-
bination (Evo-Devo). There are extremely few examples of true
Evo-Devo studies using ML, thus some studies that would not be
considered an Evo-Devo topic, but could be applied to Evo-Devo,
are discussed, as well as how evolution shaped ML techniques.
We outline new perspectives, discuss the application of ML on dif-
ferent "omic" data, and propose new directions based on current
knowledge.

We highlight that the present review has the ultimate goal to
guide bioinformatics software developers in the task of enhancing
or creating new ML tools to face the technical limitations when
working with biological data. We also hope to stimulate biol-
ogists to use different bioinformatics approaches when working
with evolutionary and developmental "omic" data.

A Glance on Evo-Devo Thinking in the Last
Decades

In the early 1980s, Evo-Devo emerged as a new research field,
effectively connecting evolution and developmental biology35.
Hence, Evo-Devo investigates the processes driving organism de-
velopment and how they are modulated during evolution to cre-
ate phenotypic diversity36. This thought arises from the method-
ological advances, such as gene cloning and sequencing, that al-
lowed the identification of the conservation of regulatory genes
shared by different species during embryogenesis35. It was ob-
served that these genes had conserved roles throughout devel-
opment, indicating developmental body structure homologies of
animals with distinct body plans35.

This knowledge originates one of the most essential concepts in
Evo-Devo: that the organism possesses a basic collection of genes
responsible to control development, called genetic toolkit37.
Many genes included in this toolkit encode transcription factors
responsible for body structures formation37. The most known ex-
ample is Hox genes, which act as important determinants of body
patterning and tissue differentiation36. They were discovered in
the fruit fly, Drosophila melanogaster, and posteriorly in evolution-
ary distant species, such as beetles, earthworms, and humans,
providing the first insight of direct links between evolution and
development36.

The phenotype is controlled by distinct regulation levels of
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Fig. 2 A summary of ML workflow with a schematic of a generic method and its algorithms. The raw data is obtained from measurements and
experiments and is preprocessed to be applied in the ML pipeline. This step can involve cleaning, outlier removal, normalization, standardization,
frequency balancing, and conversion. Additionally, features for dimensionality reduction or pattern recognition can be extracted from the data. The
features are used as input to a giving training model, and its results are evaluated. The Venn-Diagram depicts a list of ML algorithms from the three
major categories: supervised, unsupervised and reinforcement learning.

the genetic material, and this genotype-phenotype relationship
is conditioned by evolutionary pressure38. In this sense, the ma-
jority of heritable phenotypic changes are a consequence of DNA
modifications38. Mutations observed in Hox genes showed aber-
rant transformations of the body (termed homeosis), such as the
development of the leg pair in the fly antennae36. Despite this
abnormal morphology, during development, restrictions of the
possible phenotypic variability that may evolve occurs, and this
concept is called developmental constraints39. Different models
were proposed to describe the morphological evolution through-
out development, where the most known are: (i) the hourglass
model, which postulates that embryos are more variable in early
development, later converging to a similar morphology during
mid-development (a "phylotypic stage") and then progressively
diverge; and (ii) the early conservation model, that supports the
idea that at the beginning of embryogenesis is more conserva-
tive among species39–41. At the molecular level, Piasecka et al.
demonstrated that during the mid-development stage, regulatory
elements are most conserved for transcription factors, consistent
with the hourglass model. However, it was shown that the early
stages of embryogenesis are less capable of tolerating gene muta-
tions, duplication and gene introduction39,41.

Although the field of Evo-Devo has greatly advanced our under-

standing of development, the question of how the morphologic
changes occur at the molecular level during evolution is a diffi-
cult challenge. Currently, much data about developing phenotype
and genotype are available in the different databases, but the link
between this information is poorly understood. The integration
of information regarding genomic, transcriptomic and proteomic
data of developmental and evolutionary studies by bioinformatics
tools, especially by approaches that could process large volumes
of information with less computational cost, could greatly propel
Evo-Devo knowledge.

Brief Overview of Machine Learning Tech-
niques

In this section, we briefly explain some of the important ML ap-
proaches presented in the works reviewed in the subsequent sec-
tions. The aim of this section is not to be an exhaustive review of
ML, or to review challenges, perspectives, and limitations of such
techniques. Its purpose is merely to elucidate some key concepts
behind the most used algorithms found in Evo-Devo studies and
encourage researchers to further explore this field.
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Neural Networks

Artificial Neural Networks (ANN) are classical ML algorithms in-
spired by biological neural networks. This family of methods can
theoretically approximate any continuous function and is used
for supervised, unsupervised, and reinforcement learning under
different architectures. The building block of any ANN is the ar-
tificial neuron, presented in the detail of Fig. 3a. This computing
unit receives inputs multiplied by their respective weights, sums
them plus a bias, and apply this to a nonlinear activation func-
tion. The choice of activation function will depend on the task at
hand, but some of the most popular are the sigmoid, the hyper-
bolic tangent (tanh), and the rectified linear unit (ReLU). An ANN
is built by grouping neurons in layers connected to each other, as
illustrated in Fig. 3a. The input layer only corresponds to the data
values, and the hidden and output layers perform the computa-
tion. A neural network with one or more hidden layers is often
called a Multilayer Perceptron (MLP). The learning of these algo-
rithms occurs by finding the best set of weights and biases that
produces the desired output.

Recently, with the great advances in Big Data, parallel and dis-
tributed computing, and new optimization algorithms, we wit-
nessed the rise of deep learning (essentially ANNs with many
hidden layers), a branch of ML that became popular after being
responsible for major advances in fields such as speech recogni-
tion, image recognition, robots control, and bioinformatics. The
way it learns is usually by computing an error cost that informs
how far the ANN is from the desired answer, and then backprop-
agates this error through the network42. The weights are then
updated, often with some variation of the stochastic gradient de-
scent (SGD)43 algorithm. Different architectures of deep learn-
ing have been proposed for different tasks. Fig. 3b and Fig. 3c
show two of the most popular: Convolutional Neural Networks
(CNN)44 and Recurrent Neural Network (RNN)45.

CNNs are successful at analyzing spatial data, being widely
used in image recognition due to their local connectivity, invari-
ance to location and to local transition. They are formed by con-
volution layers, pooling layers, and fully connected layers. RNNs
are designed for use with sequential information, such as text,
hence the cyclic connections. Nowadays the most popular type of
RNN is the long short-term memory (LSTM)46. ANNs are pow-
erful algorithms, that were able to improve results in many areas
that other approaches struggled for years. However, one needs to
be cautious when implementing these models due to their com-
plexity and the high number of hyperparameters. Large ANNs are
usually computationally expensive to train, rely on large amounts
of data and are prone to overfitting (i.e., they learn how to clas-
sify well the training data, but have poor generalization power) if
regularization methods are not correctly used. Complete reviews
on the topic of deep learning and biological data are found in the
works of Angermueller et al.47 and Min et al.48.

Decision Trees

Decision trees49 are very common classification algorithms,
mostly due to their simplicity. In a nutshell, they consist of a
hierarchical flowchart that, at each level, has decision blocks that

ask something about the data and split it for the next level, or ter-
minal blocks that, when reached, classify the input into the cor-
respondent class. This can be visualized in the dummy example
in Fig. 4a, that illustrates how a decision tree would classify some
input with two features into four different classes. The learning in
this algorithm is the construction of the trees themselves. In this
sense, it is needed to find the feature from the data capable of
better splitting the dataset, and repeat this process with the splits
until all elements in a split belong to the same class. Usually, the
way to define what is the best split is through information gain,
computing the entropy of the split. High entropy means a more
mixed data50.

Decision trees have many advantages: they are computation-
ally cheap and provide a decision structure that is easy for users
to understand. They can also deal with numeric or nominal val-
ues. Unfortunately, they are very prone to overfitting50. The
Random Forest (RF) algorithm, presented in Fig. 4b, was created
to deal with this drawback. RF is an ensemble of many differ-
ent decision trees that promotes a voting between them to select
the final class. This greatly increases the accuracy performance of
the method, at the expense of making the decision process more
opaque to the user51. Reviews on decision trees and RF applied
to bioinformatics can be found in the works of Chen et al.52 and
Qi53, respectively.

Support Vector Machines

Support Vector Machines (SVM)54 are classifiers that work by
finding the line (in 2D), plane (in 3D), or hyperplane (in larger
dimensions) capable of splitting data into distinct classes. This
"divider" is called a separating hyperplane and works as a deci-
sion boundary, as illustrated in Fig. 5a. The task of the learning
algorithm, in this case, is to find the separating hyperplane that
maximizes the margins (the distance between the separating hy-
perplane and the closest points from each class to it), known as
support vectors. For data that is not linearly separable, as shown
in Fig. 5b, kernels are used. They transform the data, mapping
it to higher dimensions, where the separating hyperplane can be
determined50.

SVM are successful stock classifiers, meaning they perform well
on new datasets without the need of being modified. They are
usually not computationally costly, have low generalization errors
and, for a small number of dimensions, the obtained results are
easily interpretative. They have the drawback, however, of be-
ing sensitive to kernel choice and tuning parameters, what may
demand higher knowledge and tests from the researcher. Besides
that, in their basic implementation, SVMs are only capable of per-
forming binary classification and more complex tasks require al-
gorithm extensions50. A review on bioinformatics applications
using SVM is presented in the work of Byvatov and Schneider55.

Genetic Algorithms

Genetic Algorithms (GA) are a collection of metaheuristics
(stochastic methods, that makes use of randomness to find op-
timal or near-optimal solutions for hard problems) that can be
applied to several different types of optimization problems56 -
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(a) Artificial Neural Network and neuron

(b) Convolutional Neural Network

(c) Recurrent Neural Network

Fig. 3 (a) Example of an ANN. The input layer receives the numerical values, usually normalized or standardized. The hidden layers and output layer
perform the computation. The number of layers, number of neurons per layer, and the number of connections must be set by the user. In detail, the
schematic of a single artificial neuron, with inputs, weights, bias, summation, and activation function. (b) Model of a generic CNN. The convolution
layers build feature maps (groups of local weighted sums), and the pooling layers get the maximum or average sample of regions in the feature maps.
(c) Detail of a simple RNN showing its cyclical connections, that allow it to perform analyzes on sequential data.

some being of the most popular options since 197056. They
differ from other metaheuristics in being populational methods,
meaning they track a set of possible solutions that are gradually
changed in order to converge to a local solution56, and in incor-
porating concepts from genetics and evolution.

In GA, the candidate solutions are called "individuals" in a "pop-
ulation", and are represented by a "genome" that codifies their
attributes. There are several genome representations, two of the
most common being binary or real values vectors57. All solu-
tions are given a "fitness" value, that is a measurement of their
quality, dependent on the specific problem. The GA operate it-
eratively over the solutions, by selecting which ones will remain
in the population, which will be transformed, and which will be
discarded (Fig.6). There are several different strategies on how
to represent a genome, or how to select individuals. The two
major operators in GA, responsible for the modification of exist-
ing genomes, are crossover and mutation, and once again there
are several distinct options. Crossover combines two individuals,
called "parents", thus creating a new individual with character-
istics from both parents, the "offspring", that possibly has better
fitness58. The mutation randomly changes a genome, thus adding
diversity and exploration in the algorithm. The core idea is to se-
lect the best individuals at each iteration (or "generation"), and
combine them to create a new population, with a small chance
of random mutations happening, thus converging to better solu-
tions.

Machine Learning Applied to Development
and Evolution

Although "omic" studies are broadly employed in developmental
and evolutionary research, ML is still a young partner in the pur-
suit to generate and prospect new knowledge from Big-data in
Evo-Devo. Few works mentioned in the next section have an evo-
lutionary or developmental approach - the minority truly combine
both aspects in an Evo-Devo topic. This reality is reflected in the
fact that Evo-Devo is a broad topic that requires the integration
of multiple kinds of biological data, a challenge we still have to
overcome. Thus, all studies applied to evolution or development,
with a Big-data background, that could be used for Evo-Devo are
regarded, as well as other studies outside of these topics. All stud-
ies reviewed in this work can be found on Table1. In addition, the
major types of data recurrently mentioned in the cited studies and
the algorithms that displayed the best performance, or could be
considered the best choice to work with such data for newcomers,
can be found in Table2. This, however, should be followed just as
an initial guidance for newcomers, as many tasks are domain spe-
cific and the expected results from some ML algorithms can vary
even with the smallest modifications.

Machine Learning, Evo-Devo and Genomics

After the Human Genome Project, the way we see the cellular
function, evolution and disease completely changed59. The mas-
sive amount of genetic data accelerated the development of new
studies and technologies, opening the way to the "Big-data era",
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Fig. 4 (a) Dummy decision tree for the classification of data with two numerical features, x1 and x2, into four different classes. The branches in the
tree are built to better split the data into homogeneous groups. (b) Simplified diagram showing the basic structure of the RF algorithm. For the same
dataset, n decision trees are created, and the final prediction is the vote of the outputs from the individual trees.
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(b) Kernel transformation to higher dimension(a) Support Vector Machines

Fig. 5 (a) Example of an SVM classifying data (represented by dots and squares) in 2D. In this case, the separating hyperplane is the line that best
splits the data into two classes. The dots to the left belong to one class, whereas the squares on the right belong to the other. The closest points to the
separating hyperplane are the support vectors. (b) In this case, the data is not linearly separable, so a kernel transformation is applied, mapping it to a
higher dimension, where a separating hyperplane exists.

generating large-scale information stored in several databases.
Since then, genomic and transcriptomic data continuously ex-
panded, providing a landscape of essential knowledge on DNA
and RNA architecture and functionality. Genomic and transcrip-
tomic data are some of the most essential aspects of molecular
evolution and are often regarded as basic knowledge to any Evo-
Devo study60, and the availability of whole genome sequences
of different organisms offers a robust tool to study evolutionary
alterations61,62. An exceptional review by Necsulea and Kaess-
mann explains how the vertebrate transcriptome evolved between
different species, organs, and chromosomes, as well as how tran-
scriptomic changes impact on phenotype63. The topic of compar-
ative transcriptomics across species is also discussed by Roux et
al. in64.

An evolutionary study using transcriptomic data compared de-
velopmental stages of distant species (e.g. human, worm, and
fly) and revealed conserved cross-species modules enriched in
functions such as morphogenesis and chromatin remodeling65. It

was possible to identify common stage-associated genes between
worm and fly for every developmental stage65. Interestingly, a
transcriptomic meta-analysis study observed the clustering of ho-
mologous tissues belonging to distinct species, which is consistent
with the concept of developmental conservation of the gene pro-
gram across species66.

One of the most crucial biological processes that control embry-
onic development is the epigenetic program. In this sense, DNA
methylation is the best studied epigenetic modification that gov-
erns vertebrate development. Methylation patterns are respon-
sible for transcriptional repression, chromatin architecture and
cell identity across the vertebrate line, making it a central sub-
ject in Evo-Devo67–69. An exceptional work by Yan et al. used
RF to study the relationship between DNA methylation and his-
tone modification in distinct genomic regions in human embry-
onic stem cells (hESC), fetal fibroblasts (IMR90), and H1-derived
neuronal progenitor cultured stem cells (NPC) to understand the
mechanisms underlying methylation dynamics on the mentioned

6 | 1–18Journal Name, [year], [vol.],

Page 6 of 18Molecular Omics

M
ol

ec
ul

ar
O

m
ic

s
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
3 

A
ug

us
t 2

01
8.

 D
ow

nl
oa

de
d 

on
 8

/1
4/

20
18

 1
2:

05
:4

4 
A

M
. 

View Article Online
DOI: 10.1039/C8MO00111A

http://dx.doi.org/10.1039/c8mo00111a


Fig. 6 Schematic of a simple GA pipeline. A population of random individuals is generated, each of them representing a candidate solution. These
individuals are evaluated by some domain-specific metric and, based on that, selected. The selected individuals can be subjugated to crossover or
mutation operators, that create new individuals. A new population is thus created, and the process repeats until the stop criteria is met.

cell types70 (Table 1). WEKA71 implementation of RF was chosen
after it obtained the best results on a comparison of the 10-fold
cross validation for 10 sampled datasets against other four algo-
rithms: SVM with Radial Basis Function (RBF)72 as kernel, deci-
sion tree J48 (also known as C4.5)73, naive Bayes14, and logistic
regression29. The authors satisfyingly predicted methylation pat-
terns, pointing histone modifications related to specific cell types
and genomic regions. During development, chromatin regions
display a dynamic and complex regulation that affects the tran-
scriptional expression of patterning genes, especially HOX, shap-
ing and modulating tissue and limb development74. Predicting
methylation patterning shows a promising application for ML in
epigenetics, by aiding to unravel chromatin dynamics.

Sheehan and Song described the first use of deep learning in
population genetic models by introducing a novel likelihood-free
inference framework applied for the problem of jointly inferring
natural selection and demographic history75 (Table 1) with a
regular deep neural network model that took advantage of un-
supervised pretraining using autoencoders for weights initializa-
tion76. The model was trained with 345 statistics from simulated
data of different demographics for an African population of D.
melanogaster under distinct selection parameters for each demo-
graphic history. The method was used to infer the overall de-
mography and genomic regions under selection for 197 African
D. melanogaster genomes from Zambia77, learning about the his-
tory of their effective population size and selective landscape. In-
terestingly, the authors discovered that multiple alleles are more
frequently sustained in the genetic pool (balanced selection) near
centromeric regions of each chromosome, and that soft sweeps,
where a neutral mutation present in a given population can be-
come beneficial for an organism, also occur more frequently in
this region.

Still in the topic of natural population genetic studies, Pybus
et al. proposed the use of ML for the detection of positive se-
lection in genomic regions78 (Table 1). In this sense, the au-

thors used boosting79, a supervised classifier capable of maxi-
mizing the difference between two groups by estimating linear
regressions of input variables. They adopted a framework with
sequential consideration of four different boosting functions, cre-
ating a hierarchical decision tree, allowing it to discover different
polymorphism features expected under the hard sweep model to
control the demography as population specific. The algorithm
was applied to three human populations from The 1000 Genome
Project∗, that created a genome-wide classification map of hard
selective sweeps. The method achieved a rate of 5.37% sweeps
misclassified as complete or incomplete. The complete sweeps
were easier to classify: 89.58% were correctly classified, while
only 43.41% of incomplete sweeps were correctly classified. Fi-
nally, 47.95% of the incomplete sweeps were left unclassified.
The authors attribute these results to the fact that the positive
selection tests detect beneficial mutations that already reached
fixation.

The search for regulatory regions within a genome was always
a topic of important discussion in Evo-Devo, since their evolution-
ary conservation usually implies critical gene expression patterns
that must be fine tuned, especially during development, such is
the case of Hox genes74. Following this line of thought, Congdon
et al. created GAMI, a program that employed GA to unravel reg-
ulatory motifs in non-coding regions in a given genome80. GAMI
represents the candidate solutions as sequences of nucleotides,
that are evaluated with "match count", a measurement of the
best consecutive match for the desired motif within the candidate
solution sequence, considering forward and reverse-complement
matches. The employed GA makes use of elitism and a new mu-
tation operator that truncates one end of a motif and then adds a
new base randomly at the other end.

∗http://www.internationalgenome.org
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Machine Learning, Evo-Devo and Protein Data

The understanding of protein molecular behavior, function, and
structural changes along the evolutionary process are key con-
cepts in Evo-Devo in different organisms. For example, in plant
development it was established that LFY, a key inducer of floral
meristemal genes in angiosperm, has a DNA-binding domain that
is evolutionary conserved, but retains a nonconserved N-terminal
that is likely necessary to allow the interaction of LFY with dif-
ferent protein complexes and promote the expression of differ-
ent transcription factors81. Another study showed that CD24,
an important regulator of cell differentiation of multiples tissues
in mammals, birds, and reptiles, has an intrinsically disordered
state, except in glycosylation regions of protein-ligand interac-
tion, in which it shows evolutionary conservation, indicating that
protein function and structure are critical in an evolutionary sce-
nario82. Moreover, an excellent review by Londraville et al. dis-
cussed in detail the evolutionary roles and structural conservation
of leptin, a peptide that regulates appetite and metabolic rates in
several species, as well as leptin receptors83. In this sense, they
argue how leptin has several conserved protein-protein interac-
tion (PPI) regions, post-translational modification sites, and re-
gions necessary for protein folding83. Other concepts and cases
of the importance of structural conservation and relation were
already discussed in84 and85.

Nonetheless, biological phenomena are derived from the inter-
action of hundreds of pathways, biomolecules and chemical reac-
tions, thus it is plausible to assume that it is virtually impossible
to describe the function of a cell through the use of mathemat-
ics. However, in molecular biology, the study of protein structure
and how a protein behaves is perhaps the most mathematically
applicable field in Biology, since it is grounded on thermodynam-
ics, quantum physics, and classical mechanics, and has dozens of
techniques developed to study proteins conformational behavior
based on their nature86–88.

In an ML context, several studies using different approaches
were applied to protein structural information. In this sense, a
recent study by Farhoodi et al. implemented Support Vector Re-
gression (SVR)89, a variation of the SVM adapted to regression
problems, using physicochemical aspects and evolutionary con-
servation of binding regions, totaling 16 different features to rank
PPI regions90,91 (Table 1). The SVR model was trained using the
RBF as kernel, with a training dataset with 6400 complexes and
a testing set with 1000 complexes. The SVR approach had bet-
ter performance than pyDock92 and ClusPro93 in identifying top-
10 complexes, and achieved lower average ranking error. When
compared with RosettaDock94 the proposed method had worse
ranking error by a small difference but was able to identify more
top-10 complexes in six out of fifteen test cases, while Rosetta-
Dock identified more top-10 complexes in four cases. This ap-
proach clearly indicates the usefulness of ML approaches together
with evolutionary data, although it doesn’t have a developmental
background.

Moreover, McSkimming et al.95 recently described a method
for protein kinase classification using protein tridimensional data
from the eukaryotic lineage (Table 1). The authors created two

sets of kinase amino acid chains profiles from the Protein Data
Bank96, one of the labeled chains and other of unlabeled chains,
with 3,365 and 1,766 elements, respectively. Each chain was de-
fined as a unique vector with the φ , ψ, and χ1 angles at each
aligned residue, plus the pseudo-dihedral angle through the al-
pha carbon of adjacent quads of residues, totalling 961 features
per chain. A few feature selection algorithms, such as OneR, chi-
squared, ReliefF, Gain-Ratio, and correlation-based feature selec-
tion were used together in a training set with 1,000 chains and
10-fold cross-validation to select the features that better divided
the data into active and inactive structures. These features were
used by an RF classifier, that was reported as most accurate in
comparison with naive Bayes, ANN, and SVM. All these tested al-
gorithms achieved classification accuracies greater than 97% and
could make predictions with missing atoms or residues.

Phylogenetic studies are focused in the comparison of genomic
or proteomic data to draw new information about the evolution-
ary relationship between genes and proteins, and how this associ-
ation could be related to new functions and accurate classification
of gene and protein families. Phylogenetics is not a Big-data is-
sue per se, but using phylogenetic concepts is proven to be useful
together with structural and ML. For example, Liu successfully ap-
plied RNNs in the classification of protein function directly from
amino acid sequence without sequence alignment, heuristic scor-
ing, or feature engineering97 (Table 1). The RNN used common
LSTM and was trained on datasets from UniProt, being used in
the tasks of predicting different protein functions and out-of-class
predictions of phylogenetically distinct protein families that have
similar functions, allowing the prediction of remote homologies,
that have been highly useful for Evo-Devo studies, especially to
trace homologies of development-related proteins. The inputs
were the amino acids residues represented by a one-hot vector
and were scanned by the forward layer of the RNN from the N-
towards the C-terminus and reversed for the backward layer. This
architecture allows the use of context from both sides of each po-
sition. The method was able to satisfactorily predict four func-
tional classes: iron sequestering proteins, cytochrome P450 pro-
teins, serine and cysteine proteases, and G-protein coupled re-
ceptors97. The author further tested his functional predictions by
testing the iron levels in Escherichia coli for the iron sequestering
proteins. The results showed a significant decrease in iron levels
in all predicted proteins.

Khater and Mohanty took advantage of Hidden-Markov Models
(HMM)98 to identify and classify AMPylation domains in differ-
ent species99 (Table 1). HMMs, which are statistical models used
for capturing consensus information from a given set, have been
used for classification and identification of various protein do-
mains100–102, and, in this work, remarkably outperformed the
results from both standalone SVM with a single feature being
used to encode the sequence information, and hybrid SVM us-
ing a combination of features, besides being better to overcome
insertions and selections than SVMs. The authors argue that a
possible explanation for this difference in performance between
their method and others is the presence of extra helices and large
insertions in members of the Fido family. HMMs models for each
family were build using positive datasets and multiple sequence
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alignment of a non-redundant set of proteins. The data generated
by the authors helped elucidate how protein sequence and func-
tion co-evolved and how ML can be applied to both protein and
phylogenetic data.

Wan et al. combined protein sequence and gene ontology data
with RNA-seq expression profile to train an SVM model to en-
hance protein function identification in D. melanogaster develop-
ment103 (Table 1). The work makes use of the FFPred server,
which inputs a query amino acid sequence to create a set of GO
term predictions. After being converted into feature descriptors,
this information is screened against a library of SVM. A binary
decision indicating if the amino acid sequence should obtain the
annotation term is output for each classifier. The GO classes are
represented by five SVM classifiers trained with RBF kernels104.
The classification system proposed by Wan et al. could benefit
Evo-Devo studies in great length due to the integration of multi-
ple molecular information, an approach more closely related to a
developmental reality. Although the authors successfully identi-
fied new functions for unannotated proteins and were able to as-
sociate them with developmental stages, it should be noted that
this was possible due to the high quantity of biological data for D.
melanogaster.

Not related to Evo-Devo, but with a high potential as a new tool
for such studies, Nauman et al. proposed DeepSeq, a CNN built
to predict protein function105 (Table 1). The authors used input
protein sequences from 72,945 proteins in H. sapiens, with a max-
imum length of 2,000 amino acids, that were classified into five
frequent GO classes, namely: (i) ATP binding; (ii) Metal ion bind-
ing; (iii) DNA bining; (iv) Zinc ion binding; and (v) Nucleic acid
binding. DeepSeq outperformed BLAST, the most common algo-
rithm used for function prediction, mostly because it showed less
false positives for proteins with multiple functions, since BLAST
transfers the complete annotation in case of high sequence simi-
larity, despite the heterogeneous nature of similar proteins. The
model was also reported as being able to localize the residue po-
sitions in the amino acid sequence that are involved in particular
molecular activities. DeepSeq is a good example of how ML tech-
niques can be effective as new tools in evolutionary studies using
protein sequence. However, it could be interesting to test the au-
thors approach using a more diverse list of GOs, or data from
organisms with fewer protein descriptions and available GOs. A
similar CNN application was made for DNA sequences106.

Finally, another study that used evolutionary information to
predict phosphorylation sites was made by Biswas et al.107 (Ta-
ble 1). The authors created the Phosphorylation PREDictor
(PPRED), an SVM classifier with RBF kernel that used sequence
information of the PSSM profile employed by PSI-BLAST108, in
addition to phosphorylation information of serine (Ser), threo-
nine (Thr) and tyrosine (Tyr) residues in Phospho.ELM109. Since
the training data of 5724 phosphorylated proteins was unbal-
anced in regard of positive and negative sites annotated, the au-
thors performed a change in the ratio of the samples in order to
avoid bias in the model. Evaluating an independent benchmark,
the proposed method correctly predicted 152, 57, and 74 phos-
phorylated Ser, Thr, and Tyr sites out of 211, 85, and 97 annotated
Ser, Thr, and Tyr sites, respectively. Out of existing prediction sys-

tems, PPRED had better performance in terms of the Q3 score
(accuracy on the classification of the secondary structure in a he-
lix, strand, and coil) than five other predictors. The interesting
aspect of this work was to predict post-translational modifica-
tion sites in this particular case: phosphorylation. Nonetheless,
other post-translational modifications impact on embryonic de-
velopment. For example, sumoylation is related to a broad range
of cellular function during the embryonic phase, but majorly in
the brain110,111. Likewise, methylation and acetylation are also
tightly associated to brain development112,113. Phosphorylation
itself is of great importance for multiple aspects of development,
as was seen in D. melanogaster114. Due to their importance,
predicting regions of post-translational modifications, particularly
for least-known modifications, such as sumoylation, could greatly
benefit developmental studies, especially if combined to function
prediction and phylogenetic studies.

New grounds to explore: Morphometric data has joined the
party

In 1917, D’Arcy Wentworth Thompson published his book termed
"On Growth and Form", where he discusses how biological trans-
formations are composed by geometric shapes and governed by
"laws of growth"115. In his book, it was founded the concept that
the morphological shapes of all organisms can be described by
physical and mathematical principles115. The morphological as-
pects of an organism and its tissues are the results of generative
forces that acted on them, which means that the morphological
growth of an organism can be generalized in all individuals within
a species or related species115. In this sense, body shape is not ex-
plained only by a random variation that gives rise to a functional
feature115,116. In fact, it is accepted that the "laws of growth" are
responsible to create, mold and transform the morphology of bio-
logical structures, and these structures undergo natural selection,
as both basis and subject of evolution115. Thus, it is no surprise
that these new ideas of how to study the morphological aspects
of an organism fall within Evo-Devo interests. A great review by
Wanninger comprehensively discusses the new paradigms of the
integration of morphological data in Evo-Devo research, called
MorphoEvoDevo117.

Morphogenesis is molded by mechanical forces that stimulate
the movement and deformation of an element, according to its
resistance118. These mechanical forces can be promoted by dif-
ferent sources, such as biophysical alterations in the local environ-
ment. Different mechanical forces are involved in development,
such as osmotic pressure, shear stress, tensional forces, surface
tension and spring forces119. Furthermore, the environment of-
fers a great source of variability, and in an ecological context, the
major influences, like the developmental temperature, chemical
environment, and egg or embryo size, can affect embryonic mor-
phogenesis118. These forces drive embryo shape, triggering the
deformation of cells and tissues that give rise to the form and phe-
notype of the organism120. Cells are able to sense and respond to
external forces and transduce these signals to the molecular ma-
chinery, expressing genes that regulate the cell fate120. Moreover,
the cells that compose an organism are driven by a bioelectric sig-
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naling network, and thus are able to regulate pattern formation
and direct the growth and form of different tissues121. These
external influences may be converted into signals and translated
to a stimulus that influences morphogenesis in different scales of
time and space. The interesting aspect of this new side of mor-
phological studies is its mathematical background, making it a
perfect target for ML.

Nowadays, morphological studies are focused on exploring the
evolutionary origins, transitions during development, biomechan-
ical functions and understanding the causes and consequences of
normal and abnormal variations, but studies focused on develop-
ment are also being discussed115,122. However, the comprehen-
sion of morphological patterning and discovering how the biome-
chanical forces may affect the phenotype may be an important
step to bioengineering and to decipher several questions regard-
ing evolution, birth defects, and regenerative medicine - and it is
in aiding this comprehension that ML can be applied.

Although not Evo-Devo, a work by Masaeli et al.123 shows the
potential application of studying morphology to uncover differ-
ences in cell types. In this work, the authors use single cells ex-
tracts from pluripotent human Embryonic Stem Cells (hESC) and
differentiated hESC and evaluate their physical properties using a
microfluidic stretching flow field via high-speed microscopy and
latter employs SVM to classify the differences in hESC morpholo-
gies. The results showed that pluripotent hESC becomes 15%
larger, and 20% less deformable morphology after two weeks of
differentiation. The employed SVM used linear kernel and 5-fold
cross-validation, and also performed selection over features cre-
ated with clustering algorithms by hierarchically eliminating fea-
tures to maximize the classification at each iteration. The authors
were also able to observe chromatin modifications, which were
considered major players in cell morphology. Although the goal
of the study was to discriminate pluripotent cells in mixed cul-
tures, this intention does not fall back of a developmental per-
spective. In a nutshell, an embryo is a mixed pool of different
cell types that only becomes more variate as times goes by. Be-
ing able to access and accurately discriminate the morphological
changes that each tissue goes by during development, in a time-
scale-dependent manner, could be an interesting perspective for
Evo-Devo studies, especially by comparing these differences in
distinct species.

In a truly interesting evolutionary view, Cai and Ge124 cre-
ated a pipeline to improve the discriminative classification of phy-
toliths at lower taxonomic levels using ML approaches. In this
sense, the authors collected 1063 samples from 23 different taxa
of the grass family. They measured the major parameters of phy-
toliths shapes using elliptic Fourier descriptors (EFDs) and ap-
plied four different ML algorithms: SVM, Decision Trees (DT),
k-nearest neighbors (KNN), and multiple-layer perceptron neu-
ral networks (MLP). Although the algorithms are not clearly de-
scribe, probably indicating that, in this work, ML was just applied,
not developed, their results indicated that SVM had the best accu-
racy at genus level and the lowest false-positive rates. The authors
discuss that their study can be successfully employed to evaluate
morphological measures and discriminate between different phy-
toliths taxa. Although it can be discussed whether one can apply

this to non-plant data, the core idea behind this logical thinking
has, for sure, a potential positive impact on Evo-Devo studies fo-
cused on plants.

The employment of morphometric data on ML studies, and on
Evo-Devo works in general, are relatively new, with most works
being published in the last 10 years. Taking advantage that these
"morphometrics" are mathematical approximations and measures
of distinct phenotypes, the application of ML approaches, using
this kind of data is an appealing new ground to be explored.

Time, Morphology and in silico Predictions: New Paradigms
of ML Applications in Evo-Devo

It is a fact that ML can be applied to a vast amount of different
types of data, and this versatility could benefit Evo-Devo studies
at great length. The following studies employ different types of
data, such as images and synthetic predictions, instead of large-
scale data as the ones mentioned before (Table 1).

In this sense, Namin et al. took advantage of CNN and
LSTM algorithms to propose a framework for Arabdopsis thaliana
from time-lapse videos in order to understand their growing pat-
terns125 (Table 1). The CNN was used for extracting deep fea-
tures from the pictures, while the LSTM encoded the growth be-
havior of the plants over time. The results report that the use
of CNN for classification of A. thaliana in four different cate-
gories (SF-2, CVI, Landsberg, and Columbia) improved the accu-
racy from 68% when hand-crafted features were used to 76.8%
when CNN was used, and the addition of temporal information
with the LSTM further improved the accuracy to 93%. This fine-
tuning of video data of growing patterns could be applied to other
species of plants in response to environmental conditions to sim-
ulate ecological disturbances during plant development, allowing
an Eco-Evo-Devo approach to ML.

Another system used image segmentation to detect phenotypic
differences throughout Caenorhabditis elegans embryo develop-
ment126 (Table 1). In this case, the system used Differential
Interference Contrast (DIC) microscopy images to visualize im-
portant cellular functions during development, such as cytokine-
sis and cell-cell contacts. Therefore, quantitative measurements
including the number of cells and time concerning cell division
were easily achieved. Most importantly, this system allowed the
analysis of a specific target gene and how this gene contributes
to embryo development. This task was performed by knocking
down a gene, or gene set, together with the time-lapse movie
record registering the effect of the selected genes knockdown in
the embryo development. To obtain a more reliable image seg-
mentation, the system was divided in three main modules: (i)
a CNN, which classified each pixel into five categories: cell wall,
cytoplasm, nucleus membrane, nucleus and extracellular environ-
ment; (ii) an Energy-Based Model (EBM), which consist in keep-
ing the label images produced by CNN that are associated to the
correct category; and (iii) A set of elastic templates of the embryo
development at different stages that are matched to the label im-
ages. The CNN was trained with a series of overlapping 40 by
40 pixels from the images in the time-lapses, during six epochs,
using the tanh function and the mean squared error. The training
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and testing frames were manually labeled and the pixel-wise er-
ror rate was 29.0% on the 30 test frames. However, the elements
of embryos were clearly detected, and the nuclei were identified
before, during, and after the fusion of the pro-nuclei. The cell
wall is also correctly labeled, but the new cell walls created dur-
ing mitosis were harder to detect126. This work is a formidable
example of ML applied to developmental studies, and future stud-
ies using the same idea, but applied to different organisms, might
be a compelling subject.

Although not evolution-related, another interesting study em-
ployed an ML model to reverse-engineer a stochastic dynamic
model of regulation of melanocyte conversion in Xenopus laevis
in order to predict the pharmacological perturbations necessary
to create a given phenotype127 (Table 1). For this, it was used
a model based on Hill-kinetics with 14 stochastic ordinary differ-
ential equations that describe interactions of signaling molecules,
pharmacological compounds, and level of melanocyte conversion.
This dynamic signaling model of X. laevis conversion was intro-
duced in the work of Lobikin et al.128 and uses a genetic algo-
rithm described in129. The system was used to identify treat-
ments for wanted outcomes in complex situations, and was vali-
dated in vivo, confirming the computational discovery of the novel
phenotype. The combined use of the three reagents found by this
method led to the first predicted partial converted phenotype-
animals, with some melanocytes and melanocyte-free regions be-
ing normal, and others converted and colonizing ectopic sites.
The idea of predicting phenotype by inserting perturbations in
regulatory networks could be an ambitious thought for Evo-Devo,
by simulating changes in gene regulatory networks and creating
"synthetic phenotypes".

In the same line of thinking, focusing on issues permeating
the understanding of the developmental process, Spirov and Hol-
loway130, Aguilar-Hidalgo et al.131 and François132 provided a
comprehensive review on the application of Evolutionary Com-
putation (EC) in the prediction and modeling of Gene Regulatory
Networks (GRN), providing intricate details of both methodologi-
cal and biological backgrounds, as well for implementation strate-
gies. Understanding all aspects of an organism body/structure
development, from plants to mammals, is intrinsically related to
the study of GRN, since those processes are an orchestra of gene
expression patterns that require a delicate regulation133–135. It is
a fact that more studies that could provide accurate recreations
of GRN, taking into consideration spatio-temporal variables, or
perturbations, could immensely aid Evo-Devo studies.

One of the most intriguing aspects of development is the spatio-
temporal coordination of embryonic development, and under-
standing this process, which is a result of millions of biological
interactions, is one of the major challenges of Evo-Devo. In this
sense, a work from Fernández et al., employed an evolutionary
algorithm to create a self-regulated model that mimics a devel-
oping embryo based on tensegrity graphs, but without genetic
regulation136. The algorithm only selects individuals and occa-
sionally causes perturbations in their "genes", promoting changes
in their structure. The evaluation of the individuals is measured
based on the system energy. The results showed that, with min-
imal genetic control, the proposed method was able to create a

diversity of morphologies.

Finally, an exciting work by Kriegman et al. employed EC to
study the morphological changes of soft-robots that evolve in a
simulated 3D environment137. In this sense, the authors created
two different models: (i) the control (i.e. as if "non-treated"),
named "Evo", which lacks the developmental variable and is in-
tended to maintain a fixed morphology over its lifespan, and (ii)
the experimental model, named "Evo-Devo", in which a devel-
opmental program was implemented - thus, it does not sustain
a fixed phenotype. The robots "body" was implemented in the
open-source soft-body physics simulator Voxelyze138, their con-
troller was a neural network, and the robots were evolved using
the Age-Fitness-Pareto Optimization139 (AFPO) algorithm, with
the fitness being the average velocity of locomotion. For develop-
ment, the authors implemented "ballistic development" and "de-
velopmental windows" by embedding in the robots genome inter-
vals of values that some of their components could assume, and
making them linearly transit the range of values during their lifes-
pan. This amazing simulation of an "evolvable" organism opens
a new door on Evo-Devo computational studies. For example, if
expression data could be added as an extra variable, modulat-
ing new phenotypes, it would greatly benefit the biological back-
ground of such studies and amplify their significance.

The idea of more experiments focusing on how to improve the
application of ML to more refined models of image analysis, as
well as predicting possible phenotypes is, perhaps, the most ex-
citing future application of ML in Evo-Devo because there are few
studies of this field applied to the topic, making it an easy tar-
get for newer and enhanced algorithms that could detect more
accurate morphological transitions and possibly related changes
to other variables, such as environmental conditions and gene
mutations. The same goes for in silico prediction of evolutionary
changes. For example, by employing algorithms that can create
computational models of evolutionary phenotypical modifications
over time, it could be possible to create scenarios where perturba-
tions can be inserted, simulating environmental or genetic events
that potentially alters an organism development.

It is dangerous to go alone, take this: Where
you can find the data to further your research

One of the major challenges in applying ML to Evo-Devo is finding
the data to begin with. Several works create their own data, thus,
sometimes they become private, or can simply be found as sup-
plementary information on the journal website. However, most
works use public information to benchmark their own data, or
simply use as a mean to test their new approaches. In this sense,
there are a wide variety of databases where researchers can find
different types of data - some extremely popular, other still to
be discovered by a broader audience. In this brief section, we
provide a list of databases where various types of data can be
found, focusing on morphometric and image data, since DNA,
RNA and protein sequence information can be obtained in a wide
variety of websites. It must be noted that extremely well-known
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Table 1 Summary of the ML studies reviewed in this article, contemplating authors, studied organisms, biological background, the type of data used
and the applied algorithm.

Reference Organism Biological background Data Algorithm
Yan et al., 2017 70 H. sapiens Epigenetics DNA methylation and Histone modfifications RF

Sheehan and Song, 2016 75 D. melanogaster Chromossomic Regions Genomic Regions/Demographic Distribution ANN
Pybus et al., 2015 78 H. sapiens Polymorphism Genomic Boosting

Farhoodi et al., 2017 91 H. sapiens Protein Biding Regions Protein-Protein Interaction/Sequence Conservation SVR
Liu, 2017 97 H. sapiens Protein Function Amino acid Sequence RNN

Khater and Mohanty, 2015 99 H. sapiens Protein Domain Amino acid Sequence/Post-Translational Mod. HMM
Wan et al., 2017 103 D. melanogaster Protein Function Amino acid Sequence/Gene Ontology SVM

Nauman et al., 2017 105 H. sapiens Protein Function Amino acid Sequence CNN
McSkimming et al., 2017 95 Multiple Protein Kinase Conformation Protein 3D Structure RF

Biswas et al., 2010 107 H. sapiens Post-Translational Modifications Amino acid Sequence/Post-Translational Mod. SVM
Namin et al., 2017 125 A. thaliana Plant Growth Time-lapse Images CNN
Ning et al., 2005 126 C. elegans Embryonic Development Differential Interference Contrast microscopy Images CNN
Lobo et al., 2017 127 X. laevis Cellular Phenotype Hill-kinetics GA

Congdon et al., 2008 80 H. sapiens Identification of Regulatory Regions Genomic GA
Masaeli et al., 2016 123 H. sapiens Cellular Morphology Morphometric parameters SVM
Cai and Ge, 2017 124 Multiple Paleobotany Morphometric parameters SVM

Spirov and Holloway, 2013 130 Not Applicable Embryonic Development Not Applicable GA
Kriegman et al., 2018 137 Not Applicable Phenotype Prediction Not Applicable ANN, AFPO

Table 2 Summary of the types of data recurrently mentioned in Evo-Devo studies and the respective algorithms that are the possible options for
newcomers to work with, according to the cited studies.

Evo-Devo Background Type of Data Problem Algorithms

Genomic/Transcriptomic DNA Sequence Pattern Identification RF, GA
RNA Expression Patterns Classification SVM

Proteomic Amino Acid Sequence
Proitein Structure

Structural Conservation Identification CNN
Protein Function Prediction RNN, CNN

Phenotype Identification Images Visual Patterns Identification CNN
Morphometric Phenotype Analysis SVM

databases, such as Gene Expression Omnibus †, which contains
thousands of large-scale "omic" data from all sorts of studies, the
Protein Database‡, which is the major source of structural data,
as well as sites with the same renown were not listed. Due to the
massive amount of databases available nowadays and the broad
spectrum of data they provide, we focused on less known web-
sites that are more focused on developmental and evolutionary
studies (Table 3). Nevertheless, we also listed some sites useful
for benchmarking, and other less known repositories. Given the
new importance of in silico studies, we also mention a physics
simulator that can be used for experiments with soft-robots.

The Other Way Around: How Evolution and
Development Impact on ML Techniques?
It is clear that ML techniques could be useful tools to analyze
a wide variety of data in Evo-Devo studies. However, it is cru-
cial to explain that evolution has its shares of impact on inspir-
ing artificial intelligence algorithms and computational learning
approaches. In a nutshell, natural selection is a process that se-
lects features over time, selecting adaptable characteristics that
will more likely increase organism survival. This scheme of pos-
itive feedback for the organization of a system is analogous to
the learning process, and can be applied to ML studies, and the

†www.ncbi.nlm.nih.gov/gds/
‡www.rcsb.org

algorithms that employ the use of natural selection concepts are
called Evolutionary Algorithms (EAs)141–143.

There are different approaches in the EAs category: GA144,
that were already described in the section about ML techniques,
and Differential Evolution (DE)145 being two of the most popu-
lar. These population-based metaheuristics (algorithms indepen-
dent of specific problems, capable of creating heuristics that can
find solutions in optimization) are often used to solve a range of
optimization problems and are loosely inspired by ideas of mu-
tation, crossover, recombination, and selection. In this class of
algorithms, a potential solution to a given problem is encoded as
a "genome" in a "population", and is combined and altered over
generations in order to improve its fitness (or score) value146.

Moving to ML techniques, Neuroevolution147 is a family of
training methods for neural networks that can be used to ob-
tain theirs weights, biases, and overall topology. Examples of
such methods are the NeuroEvolution of Augmenting Topolo-
gies (NEAT)148, the Evolutionary Deep Learning (EDL)149, and
the Evolutionary Deep Networks for Efficient Machine Learning
(EDEN)150, that incorporate GA into training. A review on the
subject of Neuroevolution can be seen in the work of Ding151.
Interestingly, the POET152 method for optimization of weights of
large ANNs is directly inspired by developmental biology. It em-
ployed an evolutionary indirect encoding and a novel parameter
of search technique using an algorithm called Epigenetic Tracking
(ET)153.

Moreover, inspired by NEAT, Cussat-Blanc et al. created a new
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Table 3 List of databases containing morphometric, image and genomic data that could be used to explore, benchmark or to be analyzed in ML studies
focused on evolutionary and developmental biology, as well as simulators for in silico studies.

Name Website Type of Data
Reich Lab reich.hms.harvard.edu/ Provide a list of various genomic datasets focused on evolution

SB Morphometrics life.bio.sunysb.edu/morph/index.html Morphometric data from different species
PRImate Morphometrics Online (PRIMO) primo.nycep.org/ Morphometric studies of primates and evolution

Goldman Osteometric Dataset web.utk.edu/~auerbach/GOLD.html Osteometrics from human skeletons dating from the Holocene
Peter Brown’s Australian and Asian Paleoanthropology www.peterbrown-palaeoanthropology.net/index.html Skeletal and dental metrics from human and primates

Human Origins Database www.humanoriginsdatabase.org/ Fossil skeletal measurements of hominin and hominoid specimens
Paleo-Org www.paleo-org.com/&Morphometric Data of skeletal and dental records from modern and ancient humans

Australopithecus australopithecus.org/index.html Morphometric data on human evolution
Image Data Resource (IDR)140 idr.openmicroscopy.org/about/ Contains a wide variety of biological image studies

Broad Bioimage Benchmark Collection data.broadinstitute.org/bbbc/image_sets.html Useful for benchmarking image studies
Voxelyze138 https://github.com/jonhiller/Voxelyze Voxel simulation library for static and dynamic analysis

algorithm for the training of artificial gene regulatory networks
(AGRNs), dynamical systems used in the control of agents, called
GRNEAT154. This approach allowed the design of better AGRNs
than regular GA and evolutionary programming strategies for the
used benchmarks. Lones has a complete review on the use of
AGRNs in computational problems155.

Compositional pattern-producing networks (CPPNs)156,157 are
another architecture of Neuroevolution that differentiates them-
selves by adopting aspects of development, since they have the
ability to bias evolutionary search to obtain solutions with reg-
ular internal structure158. Building upon this, Beaulieu et al.
created a method called developmental compression158 that ex-
plores concepts from Evo-Devo such as developmental mutations
to address the problem of catastrophic forgetting, one of the ma-
jor challenges in training neural networks159,160.

Cellular Automata161 is also an area that could benefit from
Evo-Devo. The work of Nichele describes an evolutionary and de-
velopmental system with the incremental evolutionary growth of
genomes without any a priori knowledge on the necessary geno-
type size. This incremental growth of genome size could help ar-
tificial systems, making them able to avoid the need of knowing a
genotype size and providing scalability162.

A review by Xu163 explores how the combined ideas from evo-
lutionary developmental psychology, Evo-Devo, and evolutionary
cognitive neurosciences are impacting the field known as Evolu-
tionary Development Robotics (Evo-Devo-Robo). Evo-Devo-Robo
is the combination of two active research topics in robotics: Evo-
lutionary Robotics (ER), that uses evolutionary computation to
create autonomous controllers, and Developmental Robotics (De-
vRob), with focus on the application of cognitive behaviors, such
as language, emotion, and self-motivation163. Finally, Kenyon
discusses phylogenetic and ontogenetic development as a way
to implement artificial intelligence and the relationship between
iterative biological development and iterative software develop-
ment164.

Perspectives: Where do We Stand, and What
Could Benefit ML in Evo-Devo
The number of works applying ML to evolutionary biological data
prospered in the last 5 years, with more algorithms adapted and
employed to overcome challenging knowledge and technological
gaps. Comprehensive reviews by Libbrecht and Noble, and Mck-
inney et al., discussed the application of ML in genomic data, ex-
emplifying how powerful and flexible ML techniques can be for

this kind of data165,166. For bioinformaticians that wish to apply
ML techniques in a given "omic" data, in terms of microarray data
classification, SVM and RF approaches are gaining the upper hand
and displaying favorable results15,16. Previous research showed
that the distributions in microarray classification data are well
represented by linear decision functions167,168, and Statnikov et
al. argues that SVM could be less sensitive to the choice of param-
eters for those functions17. Similarly, deep learning is commonly
used to work with image and temporal data, as seen previously
in multiple reviews, thanks to its capacity of performing well with
spatial (in the case of CNN) and sequential (in the case of RNN)
data. Thus, such techniques could be an initial focus for those
who are starting to apply ML techniques in biological data.

It is essential to explain that working with Evo-Devo is not an
easy task for ML approaches. Most works, as presented in Ta-
ble 1, are focused in either evolutionary data to answer a given
subject, or with developmental data. Combining both fields in a
single study requires the knowledge and manipulation of a large
set of variables, including spatial-temporal and morphological in-
formation, in addition to transcriptomic data. Arbitrarily applying
ML in such a complex background as Evo-Devo will not generate
useful data. The use of time-lapse image analysis could be an in-
genious way to integrate morphological changes, if integrated to
the time-equivalent associated transcriptomic profile. Integrating
spatial-temporal data would also be an interesting challenge to
overcome. However, a spatial-temporal analysis would require
periodic sample collection that would greatly increase experi-
mental costs. Integrating different "omic" variables, and possibly
spatial-temporal data, in the same way, Evo-Devo integrates sev-
eral biological contexts, would be the greatest challenge in this
field of research.

In addition, most works in this review used ML to perform
supervised learning for classification tasks, and many challenges
arise from the use of Evo-Devo data or biological data in general
with this goal. One of the major concerns is the "Curse of Di-
mensionality", when the data has a large number of dimensions,
as can be seen in microarray data or collections of pictures and
videos. High dimensional data is often associated with overfitting
in ML algorithms, higher processing costs and runtime, increase
in memory consumption, and difficulty in visualization. One way
to avoid overfitting is to expand the dataset by performing new
experiments, but this can be expensive and time-consuming. The
addition of artificially generated data should be considered only
after great consideration since it could add arbitrary values that
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should otherwise represent real-world phenomena. Another op-
tion, commonly used with ANNs is the incorporation of some type
of regularization in the construction of the method. The works of
Gonçalves et al. may also provide some guidance in regard of
overfitting in evolutionary algorithms169,170.

There is also the "Large p, Small n" problem for datasets with
many dimensions but a small number of samples. Many ML meth-
ods, especially in supervised learning like deep learning, thrive
when the samples from which they can "learn" are abundant. Suc-
cessful deep learning applications usually rely in sets of thousands
or even millions of examples, but for many evolutionary or devel-
opmental applications, all that is available are a few dozens.

These kind of concerns should bring to light methods capable
of reducing dimensionality. Among them, feature extraction is the
major group of techniques capable of transforming the original
feature (dimension) space of the data into a different space with
a new set of axes171. In this case, the transformed feature space
does not need to have physical or biological meaning, what can
compromise interpretation172 while providing a better discrimi-
natory ability. Popular examples of methods are Principle Compo-
nent Analysis (PCA)173, Singular Value Decomposition (SVD)174,
Factor Analysis (FA)175, and t-Distributed Stochastic Neighbor
Embedding (t-SNE)176. Also relevant are autoencoders, which
are ANN models used for unsupervised feature learning76. Fea-
ture selection is a subgroup of feature extraction that instead of
transforming the original space, aims to choose a subset of rel-
evant features by the exclusion of the irrelevant, redundant or
noisy ones177. In many biological applications, this approach is
better suited since it leads to better model interpretability. An ex-
ample of such method would be Minimum Redundancy Maximum
Relevance (MRMR)178. A review of the area and its applications
to genomic data can be found in the work of Ang et al.179.

Researchers should also bear in mind the other major areas
of ML, namely unsupervised and reinforcement learning, which
were less employed in the cited reviews. The use of reinforcement
learning has been growing in the past years due to its ability to
"learn" without the need of sample data and the satisfactory re-
sults achieved in a wide range of applications, such as automation
of vehicle and robot control180, video games181, and even beat-
ing humans in the game of Go182. This kind of algorithm shows
great promise in 3D manipulation of biomolecules and could im-
pact Evo-Devo studies. For a complete description of reinforce-
ment learning, refer to183.

In general, to make life easier for both biologist and biology
software developers, the application of ML in biological informa-
tion can also greatly expand with the generation of more high-
throughput data and greater efforts for sharing and standardizing
datasets. A review by Li et al. discussed in depth the character-
istics and application of ML in different types of datasets184. In
fact, each platform has its unique nomenclature and data orga-
nization, which enormously difficult the integration of multiple
techniques and datasets for bioinformatics in general. Specifi-
cally, one of the main challenges of a researcher that wishes to
use ML methods in Evo-Devo is the lack of large, ready-to-use,
well-defined sets. Despite the existing difficulties, however, ML
and Evo-Devo have already shown to be powerful allies.

Conclusions
Overall, the application of ML in Evo-Devo is still young and, as
discussed before, there is a wide research ground to be discov-
ered and challenges to be overcome. The use of well defined
omic datasets would greatly improve the life of both biologists
and software developers, greatly boosting the application of ML
in Evo-Devo. In a subject as broad as evolution and development,
the application of different computational tools can propel the
knowledge of the evolutionary process and open new pathways
to be explored.

Key Points
• A brief explanation of the major thinking behind Evo-Devo

and machine learning techniques is provided.

• We review the current works concerning the application of
machine learning on evolutionary and developmental data.
All types of works that could impact on Evo-Devo were taken
into consideration after an extensive review of the literature.

• The selected works are comprehensively reviewed concern-
ing the employed algorithms, biological backgrounds and
major results.

• Other works, not necessarily related to Evo-Devo, that could
provide new insights on the field and ML applications are
also reviewed.

• New perspectives are drawn based on the gathered data for
the application of machine learning on Evo-Devo.
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