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Highlights

Relevance aggregation for neural networks interpretability and knowl-
edge discovery on tabular data

Bruno Iochins Grisci1,2, Mathias J. Krause2, Marcio Dorn1,∗

• Relevance aggregation generates scores for each input feature from sev-
eral samples.

• It correctly identified which features are important for the network’s
predictions.

• The set of relevant input features can be different from class to class.

• New methods allow the visualization of the patterns learned by the
model.

• Relevance aggregation can help to identify incorrect rules or machine
bias.
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Abstract

The lack of interpretability of neural networks is partially why they are not
adopted in a wider variety of applications. Many works focus on explaining
their predictions, but few take tabular data into consideration, which led
to a small adoption even though this data is of high academic and business
interest. We present relevance aggregation, an algorithm that combines the
relevance computed from several samples as learned by a neural network and
generates scores for each input feature. We also present two methods for
visualizing the learned patterns, leading to a better model comprehension.
The method was tested in synthetic and real-world datasets (breast cancer
gene expression, online shopping behavior, and national high school exam)
for classification and regression tasks. It correctly identified which features
are the most important for the network’s predictions. The selected features
can be distinct for each class. The rank of features scores also matches their
contribution to the model’s performance. The results selected relevant fea-
tures from the data, paving the way for knowledge discovery. The top-ranked
features were consistently able to improve the performance of another inde-
pendent classifier. For poorly trained neural networks, relevance aggregation
helped identify incorrect rules or machine bias.

Keywords: Neural networks, Relevance propagation, Tabular data,
Interpretable machine learning, Knowledge discovery, Feature selection
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1. Introduction

Even though neural networks have achieved state-of-the-art results in
many challenging tasks and their adoption has become widespread in the past
years, they are still widely regarded as “black-box” models. Their learned
behaviors are hard to explain or predict due to their intrinsically complex
structures. When mapping an input to output, the features learned are only
implicitly described by a large number of internal model parameters [20].
The lack of a better understanding of the decisions being made can lead
to underperformance, distrust, or machine bias [24; 29; 36]. Interpretable
machine learning is the collection of algorithms and techniques that allow
humans to understand the cause of a decision made by a machine learn-
ing model, including neural networks [29] and other predictors, like Support
Vector Machines [12].

A great portion of recent works on the interpretability of neural net-
works mainly focus on image data, such as the research on neural networks
“circuits” [34]. Other methods like deconvolution [48] or VisualBackProp
[10] were designed with convolutional neural networks in mind. Algorithms
that use surrogate models such as Local Interpretable Model-Agnostic Ex-
planations (LIME) [37] require the definition of a neighborhood, which is
not well defined for tabular data [29]. Some works are also based on the
attention mechanism [49]. This work will focus on algorithms that explain
single predictions and can be applied to types of neural networks that better
suit tabular data. Examples are Layer-wise Relevance Propagation (LRP)
[6], DeepLIFT [41], and sensitivity analysis [42]. Such algorithms will be
discussed in more detail in Section 2.

We define tabular data as any data (binary, continuous, ordinal, or cate-
gorical) that is unstructured, often represented in a table format (samples as
rows and dimensions as columns) [29]. By “unstructured” we mean the lack
of direct spatial, sequential, or temporal relationship between the different
dimensions of the data points. In other words, the vector of dimensions (the
columns in the table) can be permuted in any way without changing the
meaning or information about the samples, given that all samples have the
same permutation.

This characteristic is made evident when comparing tabular to image
data, in which the dimensions (pixels) have a spatial structure. Altering
the order of the pixels of an image alters the overall meaning of the image.
Moreover, the information conveyed by an individual pixel in one sample
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can differ from the pixel information in the same position in another sample
[30]. This difference does not occur in tabular data, for which the same
dimensions (columns) will always retain the same meaning across samples.
Fig. 1 illustrates this concept. The fixed representation of dimensions in
tabular data is going to be exploited by the method described in Section 3.

The terminology can also differ between tabular and image data. For
the latter, the terms “inputs” (when the data is being given to a machine
learning model) or “dimensions” often refer to the raw values of the pixels,
while “features” usually is used to describe higher-order information and
structures, for instance, edge detectors. For tabular data, the difference
between these terms is blurrier. In this work, “dimensions,” “inputs,” and
“features” refer to the same objects: the columns of the tables.

Sepal length Sepal width Petal length Petal width Species

5.1 3.5 1.4 0.2 I. setosa

4.9 3.0 1.4 0.2 I. setosa

Figure 1: Comparison between image and tabular data. In the left image, the
“meaning” of the pixels inside the red square can be understood as the bee antennae, but
in the right image, the same pixels are only representing the picture background. Compare
this to samples from the Iris dataset [18], in which the columns will always represent the
same feature across all samples, for instance, the sepal length (in red).

Despite the focus on image and text data in deep learning and explainable
AI research [29], much of the available data in science and business is tabular.
The knowledge domains range from microarray genes expression from cancer
patients [16], single-nucleotide polymorphism in forensic genetics [4], patient
therapy data [47], hemogram exam data from COVID-19 patients [5; 19; 46],
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e-commerce [38], to astrophysics [27].
The lack of interpretable results is one of the reasons why artificial neu-

ral networks are not being more seriously applied to such data, disregarding
their predictive power. Lamy et al. [24], for instance, point out how deep
learning is not unanimously well regarded in medicine and advises against its
use in breast cancer tabular data. This lack of explainability led to simpler
statistical or linear models often being chosen despite their lower predictive
power or inability to deal with the underlying complexity and nonlinearity
[32]. There are, thus, still gaps in how to “open black-boxes” neural net-
works while retaining their advantages, such as solving nonlinear tasks and
autonomous feature learning. Section 3 describes a way of achieving this.

The advent of explainable machine learning also unlocks another possible
way to perform feature selection. Feature selection algorithms can help ma-
chine learning models achieve better generalization, prediction performance,
and scalability for datasets with a large dimensionality and the presence of
irrelevant, redundant, or noisy input features [2]. Usually, the selection hap-
pens as a preprocessing step. Still, with interpretable algorithms, a model
can be trained without selection and afterward be inspected, so we know
the input features it learned. The features considered unhelpful or contra-
dictory can be removed, and the model retrained on the “improved” subset
of input features [30]. Besides the uses for model validation and improve-
ment, such algorithms can lead to knowledge discovery on scientific problems
with limited human intuition or domain knowledge [32]. Examples of these
applications will be discussed in Section 4.

In this work, we tackle neural network interpretability when trained on
tabular data, describing how already existing algorithms can be adapted
for this goal. Moreover, several strategies for visualizing and validating the
interpretation outcome are applied to synthetic and real-world datasets.

2. Related work

This section gives a more in-depth explanation of Layer-wise Relevance
Propagation (LRP), that will be used by the method proposed in Section 3.
It also discusses applications of interpretability algorithms.

2.1. Layer-wise Relevance Propagation

LRP is an algorithm for neural network interpretation capable of identi-
fying the specific features in the input responsible for the network’s output
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for each sample [6]. For instance, for an image classifier, it can indicate which
pixels were considered when deciding to which class the image belongs [31]
(Fig. 2). It found many applications in analyzing the inner-workings and
quality of image and text classifiers [3]. It can be used to extract knowledge
from trained machine learning models and datasets, as well as to discover
their biases [30; 32].

Figure 2: Example of a relevance heatmap created with the LRP algorithm. The
original image is a handwritten digit “8” from the MNIST dataset [14]. A neural network
was trained to classify the digits in ten different classes. This heatmap shows which pixels
in the sample image were deemed relevant by the network for this prediction: darker red
pixels have more relevance, darker blue pixels have more “counter-relevance”, and white
pixels are irrelevant. For this particular sample it is possible to see that the red pixels
follow the shape of a regular “8”, while blue pixels appear in the bottom where the trace
is not so clear.

LRP works with two passes through a trained neural network (Fig. 3):

1. Feedforward: goes from the input layer to the output layer. The
activation of the neurons in the kth layer is ak = φ(Wjkaj + bk), in
which φ(.) is the activation function, Wjk are the weights from layer j
to layer k, aj are the activations from layer j, and bk are the biases from
layer k. The index of individual neurons in the layers was omitted. This
corresponds to the black-headed arrows in Fig. 3 and is the standard
feedforward pass of a neural network.

2. Backward: sends the output value back through the network structure
as a relevance message that is distributed among the neurons in the
previous layers and stops when the input layer is reached [6]. This
corresponds to the white-headed arrows in Fig. 3. The backpropagation
procedure must follow a conservation property, in which the relevance
message received by a neuron must be redistributed to the previous
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layer in an equal amount [6]:∑
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Figure 3: A schematic diagram of the two passes required for computing the
relevance. The black-headed arrows show the feedforward pass, while the white-headed
arrows show the backward pass. The color intensity at the neurons represents the amount
of relevance they received from the next layer. The output neuron has the darkest color
because the output value is the original relevance. ai is the activation of a neuron in the
ith layer, and Ri is the relevance of a neuron in the ith layer.

The propagation can also be studied as a succession of Taylor expansions
within the Deep Taylor Decomposition framework [30; 31]. The computation
of the backward pass can use several rules that take into account the input
domain and layer type. A description of the most common rules can be found
in Montavon et al. [30]. We describe here the two LRP rules used in this
work: LRP-αβ [6] in Eq. 2 and w2-rule [31] in Eq. 3.
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For both equations, k and j are the kth and jth layers, a is the output
of a neuron, w+ and w− are positive and negative weights, α and β are
constants, and R is the relevance signal. LRP-αβ is a rule that satisfies local
conservation properties, and that achieved good empirical results [32]. The
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constants must obey the properties α − β = 1 and β ≥ 0 [6]. This rule
can be interpreted as a relevance signal αRk that is redistributed to previous
layers in proportion to its excitatory effect on ak, and a “counter-relevance”
−βRk that is redistributed to previous layers in proportion to its inhibitory
effect on ak [32]. The w2-rule is a special rule for the input layer of a neural
network when any real-valued input is admissible. It redistributes relevance
proportionally to the square magnitude of the weights [31].

The relevance at the input neurons is the relevance of the correspond-
ing feature regarding the neural network output, or how much each input
contributes towards the current prediction. The closer the relevance of an
input is to zero, the less it contributes, meaning it is less relevant. A pos-
itive relevance means that the feature is collaborating towards the network
prediction, while a negative relevance or “counter-relevance” is “against” the
same prediction. Fig. 2 has an example of this concept.

Previous research has pointed to several advantages of the LRP algorithm
when compared with other techniques. LRP can provide an explanatory in-
put pattern that indicates evidence for and against the network prediction,
for any network with monotonous activation, even for non-continuous func-
tions [39]. This allows LRP to work on a wide variety of neural network
architectures, layer types, activation functions, and training algorithms. It
also showed better quantitative and qualitative results than sensitivity maps
and the deconvolution algorithm [32; 39].

LRP has some drawbacks when applied to tabular data, however. Usually,
for this kind of data, a neural network would have fully connected layers
instead of convolutional or pooling layers. It was shown empirically that
the capability of LRP producing good explanations for networks with many
fully connected layers is jeopardized because of loss of selectivity. This is
due to the LRP redistributing relevance to too many lower-layer neurons (as
opposed to in convolutional layers) [32].

Another challenge, based on experimental results, is the application of
LRP when the input features are not in the same space, for instance, a
mixture of numerical and categorical features with binary encoding. This
scenario can produce less explainable results even for normalized features.
One way to mitigate this problem is to stratify the numerical features [47].

2.2. Applications

As already mentioned, researchers applied explainable machine learning
and LRP specifically in the inspection and comparison of deep learning mod-
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els and data. LRP has also been used for knowledge discovery and decision
interpretation in tasks such as MRI-Based Alzheimer’s disease classification
[9], classification of audio signals [7], and the prediction of morphological and
molecular tumor profiles [8]. In common, all these works deal with spatial
or temporal data, while our method intends to bring LRP to the analysis of
tabular data.

We highlight that Böhle et al. [9] proposed a strategy to analyze the LRP
results on specific brain areas in 3D images by summing the relevance of their
voxels that is similar in some aspects to the method presented in the next
section. This was possible because magnetic resonance imaging follows the
same format and allows a relative alignment across subjects, which is not nec-
essarily true for other types of image data. Even in Böhle et al. [9], individual
differences make impossible a perfect match between the reference location
and individual patients. The possibility of perfect feature alignment between
all tabular data samples will be exploited by the proposed method in the next
section. LRP has also been used as a way to explain therapy predictions of
metastatic breast cancer [47] from a mixture of tabular (demographic, tu-
mor, and metastasis information) and sequential data (time-stamped clinical
events). This work used an LSTM (Long Short-Term Memory) with an em-
bedding layer and a feedforward network for the classification and LRP for
feature selection based on how frequently the features received the largest
amount of relevance. A similar method to LRP, DeepLIFT [41], was used
by Fiosina et al. [17] in the task of augmentation of small RNA expression
profile. The work compared samples based on the scores from DeepLIFT
to understand which sRNAs are important for a particular prediction using
tabular data.

3. Proposed method

We propose what we call “relevance aggregation”, to serve as a generic in-
terpretatability method for feedforward multilayer neural networks and tab-
ular data. Relevance aggregation aims to use algorithms capable of inter-
preting the individual decisions of neural networks, such as LRP, to retrieve
the input features that were deemed by the model as the most relevant for
its predictions when performing classification or regression. Clustering in-
terpretation can also be a possibility due to recent works on “neuralization-
propagation” [23].

8



A näıve version of the method is shown in the pseudo-code of Algorithm 1.
A practical implementation can make use of matrix and vector operations to
be more efficient. The main idea is to train a neural network on the desired
data (line 3), and then compute the relevance of each input at each sample
(line 6). The algorithm uses the absolute values to give the same importance
to relevance (positive values) and counter-relevance (negative values) (line 7).
The values are scaled so that all samples have the same weight when aggre-
gating (line 7). This is particularly important for regression tasks, in which
the difference in the target value would bias the relevance towards samples
with higher targets.

Algorithm 1: Relevance aggregation

Data: Dn×m: data, c: classes, network: neural network
Result: Ordered relevance scores

1 begin
2 R, S, score← [ ] ;
3 train network on Dn×m;
4 for sample1×m in Dn×m do
5 out← predict(network, sample1×m);
6 rel1×m ← compute relevance(network, sample1×m, out);
7 rel1×m ← abs(rel1×m) / max(abs(rel1×m));
8 Rsample ← rel1×m;

9 end
10 for featn×1 in Rn×m do
11 for class in c do
12 Sfeat,class ← average(featn∈class);
13 end

14 end
15 for feat1×c in Sm×c do
16 scorefeat ← average(feat1×c);
17 end
18 return sort(scorem×1);

19 end

The aggregation is done at two levels. The first is by class, returning the
average of the rescaled relevance of each input only for the samples belonging
to the same class (line 12). The choice of classes is arbitrary. In the regular
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case for classification, one would use the real classes of the dataset, but it is
possible to split the samples to suit the specific application better. For re-
gression, the default behavior would be to consider that all samples belong to
the same class. However, another possibility is to split the samples according
to the ranges of the target value. This intermediate step to compute aggre-
gation scores for different classes allows the differentiation of scores between
groups of samples, acknowledging that the neural network may use distinct
sets of features to identify each group.

The second level of aggregation is accomplished by averaging the relevance
scores of each class (line 16), returning a global relevance score that can be
sorted (line 18). The final score is the average of the class scores so that
each class contributes in equal amounts to the result. It is common to deal
with unbalanced datasets, and in this scenario, the relevance of samples from
the larger class would overshadow the others. Examples of such datasets are
discussed in Sections 4.2 and 4.3.

3.1. Handling categorical data

It is often the case in tabular data to have categorical features that must
be encoded with numerical values before they can be used as input for a
neural network. One-hot is a common example of encoding in which a bi-
nary vector of length equal to the number of possible categories represents a
feature. The index of the corresponding category value receives a value of 1,
and all others receive 0.

With this encoding as an example, it can be handled by relevance ag-
gregation in two ways. The first is to consider the original feature is now
b binary features and take their scores individually. This scheme is useful
to compare the relevance of each possible value of the original feature. The
second way of computing the score is based on how to obtain the pixel rele-
vance from a color image: summing the relevance of the pixel at each color
channel [39]. Analogously, we can get a single score value for a categorical
feature by summing all the b scores from the encoding. However, in the con-
text of relevance aggregation, it was chosen to average the scores with the
arithmetic mean instead, to keep the values between zero and one, and to
prevent artifact introduction when distinct categorical features have different
encoding lengths.
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3.2. Hyperparameters of aggregation

Most of the options of hyperparameters for relevance aggregation are
decisions about the neural network and the relevance algorithm. In regard of
Algorithm 1, the main choices are the types of average and aggregation used
in lines 12 and 16. In this work, we opted for the geometric mean in Eq. 4,
as it would not change the range of values and because it is less affected by
outliers than the arithmetic mean.

f(x1, ..., xL) = (ΠL
l=1|xl|)1/L (4)

The chosen rules for computing the relevance were the LRP-α2β1 for hid-
den layers, and the w2-rule for the input layer, for the reasons presented in
Section 2.1. The LRP-α2β1 helps the identification of features that contra-
dict the prediction by allowing the flow of negative relevance [32]. The rele-
vance heatmaps, sparsity, and relevance orders are stable for small β values
[9]. Nevertheless, other propagation rules or similar methods for explaining,
such as DeepLIFT, can easily be incorporated into the relevance aggregation
algorithm depending on specific needs.

For LRP, it is possible to select which output of the neural network will
be inspected. In this work, we always use the relevance of the predicted class,
but it may be useful to choose a specific output for different applications.
For classification, the relevance should be computed from the outputs before
applying the softmax function, while the linear output is used for regression.

Regarding the neural network, it is up to the user to select the appro-
priate model, topology, and training algorithms. This work focuses only on
feedforward multi fully connected layer neural networks due to the nature of
tabular data. In the case of using LRP for computing the relevance, to pro-
duce good explanations, it is recommended to apply dropout, to use ReLU as
the activation function, and to force the biases to be zero or negative during
training time to help the relevance distribution [32].

3.3. Motivation

This method should work for a wide variety of tabular data, including
mixtures of them (for instance datasets with real-valued and categorical fea-
tures), and both (multiclass) classification and regression tasks. In Section 4,
we show how the method performs on diverse datasets.

One question that may arise is why aggregating the relevance is needed
in the first place, instead of applying the regular interpretation algorithms
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Table 1: The difference between seeing the “raw” relevance from LRP and
the relevance scores from relevance aggregation. These values came from the
experiment with a breast cancer gene expression dataset described in Section 4.2. Each
cell shows the relevance of a specific feature (columns) and sample (rows), as obtained
with LRP. The last row is the final relevance score obtained (considering the full dataset).
The six samples were randomly picked, one from each of six different classes. The full
dataset has 151 samples and 54, 676 features, making the individual inspection of the
relevance infeasible. With the relevance score it is possible to sort the features according
to their global contribution to the neural network prediction. In this example, the feature
“240701 at” is the most relevant, with a score of 0.416.

240701 at 223259 at 1552801 at 1568691 at 207226 at 217051 s at ...
s105 0.065 0.062 0.049 0.009 0.003 0.003 ...
s101 0.036 0.049 0.016 0.005 0.002 0.008 ...
s162 0.043 0.034 0.037 0.030 0.017 0.003 ...
s200 0.018 0.014 0.006 0.008 0.002 0.004 ...
s183 0.014 0.015 0.008 0.007 0.003 0.001 ...
s174 0.024 0.027 0.043 0.026 0.013 -0.001 ...

... ... ... ... ... ... ... ...
score 0.416 0.390 0.278 0.158 0.076 0.030 ...

and analyzing the individual samples. The first reason is the heterogeneity
present in the data that makes interpretations at the sample level less infor-
mative or clear. Meanwhile, the aggregation reveals the contribution of the
features globally or group-wise. This means that with aggregation, it is pos-
sible to discover which features the network is relying on for the classification
of specific classes or even stratified groups in regression. Our experiments in
Section 4 show that for multiclass classification, the set of the most relevant
features is different for each class, which can provide new insights about the
inner-works of the network and the data itself.

Aggregation also solves the problem of choosing which sample to inspect
among potentially thousands of candidates by offering a global view of the
relevance. While for image and text data, it may be feasible to inspect the
results of individual samples visually; for tabular data, it would mean to
check several vectors of numerical values one by one (illustrated in Table 1)
[29], what is tiresome and prone to error.

The third reason for using aggregation is related to two already discussed
topics: the loss of selectivity in LRP when applied to fully connected layers
and the fixed order of tabular data features. From the conservation property
(Eq. 1), the total amount of relevance cannot change from layer to layer, so
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fully connected layers (that do not share weights as convolutional layers do)
with many input neurons will sparsify the relevance in the previous layer.
By combining the relevance of multiple samples in a single score, the “noise”
in each input has less influence, and a clearer pattern of what is relevant
emerges. What makes this pattern possible are the fixed positions for each
feature in the data, allowing the direct aggregation of relevance over multiple
samples by matching their features. As previously discussed, for image or
text data aligning the actual features is not trivial, while for tabular data,
we have this for granted (Fig. 1).

Finally, by exploiting algorithms such as LRP, there is no need to retrain
models or create local surrogates to approximate the behavior of the black-
box predictor as in LIME [37]. LRP also takes into consideration feature
interaction, something that is ignored by many explainable machine learning
algorithms [29].

3.4. Visualization

As implied in the last section, computing the relevance scores for each
feature is only useful with practical ways to understand and interpret the
results. For this reason, we also propose two methods for visualizing the
output from relevance aggregation.

1. Table heatmap: inspired by the relevance heatmaps in Bach et al.
[6], the table heatmap is a simple way to display the relevance of tab-
ular data. Each row represents a feature ordered by their global or
class scores (first columns). Each column represents a sample from
the dataset. The cells contain the original data value and are colored
according to the scaled relevance (blue for negative, red for positive,
white for zero, and the intensity increasing with the magnitude of the
value). Examples can be seen in Figs. 5, 10, 12a, and 14a.

2. Weighted t-SNE: t-SNE is a popular method for visualizing high-
dimensional data in 2D [28]. In the early steps, the algorithm must
compute the distance between the data points, usually relying on the
Euclidean distance. We propose that using the weighted Euclidean
distance in Eq. 5, with the relevance scores as weights, one should get
a 2D visualization closer to the data separation learned by the neural
network. The scores range from 0 (less relevant) to 1 (more relevant),
so when scaling each dimension by its score, the dimensions with higher
relevance will account for a greater portion of the distance between the
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points, and thus will have more influence in their position in the final
visualization. Examples can be seen in Figs. 6, 11, 12c, and 14c.

d(p, q) =
n∑

i=1

√
(wi(qi − pi))2 (5)

4. Experiments and results

We now present a series of experiments with synthetic and real-world data
to test and validate relevance aggregation. To present it as a general method,
we selected datasets with distinct sizes, data types, and tasks (binary or
multi-class classification and regression). All code was written in Python 3.7
with the libraries SciPy [45], Pandas, NumPy, and Scikit-learn [35].

All neural networks were trained with Keras using the Adam optimizer,
the (class weighted) categorical cross-entropy (for classification) or mean
squared error (MSE) (for regression) as loss function, and ReLU as the acti-
vation function. The output layer uses softmax for classification and linear
function for regression. The training of all networks was under the restric-
tions listed in Section 3.2, including the use of (10%) dropout layers. When
needed, the inputs were normalized with the standard score (separated in
training and testing sets). The number of trainable parameters ranged from
1, 241 to 5, 498, 156. We note that the trained networks are not a result of
relevance aggregation, but a necessary previous step.

For all experiments the relevance and scores were computed as noted in
Section 3.2, using the LRP Toolbox1 [25]. The results were computed using
stratified 10-fold cross-validation, except for the breast cancer data that used
3-fold due to the available number of samples. When comparing multiple
algorithms, the same data partitions were used to allow a fair comparison.
As done in Yang et al. [47], to make the experiments more challenging and
realistic, the relevance and scores reported are always regarding the test
samples. This also avoids any resulting bias from the training process.

The experiments ran on a 64-bit Ubuntu 18, Intel Xeon E5-2650V4 30
MB, 2 CPUs, 2.2Ghz, 48 cores/threads, 128G, 8TB, Titan Xp Pascal ma-
chine. Despite not being the focus of the work, we note that dealing with
tabular data is often cheaper than other types of data. The processing time

1https://github.com/sebastian-lapuschkin/lrp toolbox
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of the whole experiment pipeline ranged from minutes to a few hours for the
larger datasets.

4.1. Synthetic data

Two major questions should be answered to validate relevance aggrega-
tion: (i) are the input features with larger scores contributing the most to
the neural network’s output? And (ii) do these features convey relevant in-
formation about the original data? We start our experiments with synthetic
data as it makes answering the second question relatively straightforward.

The first two datasets were adapted from the exclusive-OR (XOR) prob-
lem as a function of two out of n inputs presented by Tan et al. [44]. In
this problem, the XOR function is computed from two fixed binary features
(known to the user, but not to the machine learning models) in the input
data, and the remaining n − 2 (n = 50) features are random binary values
with no impact on the output. For this dataset, 500 samples were randomly
created, keeping the classes balanced. This task is presented in its classifi-
cation (two classes: 0 or 1) and regression (target value equal to the XOR)
form. Thus, the algorithm’s goal is to correctly compute the XOR function
from the two truly relevant features.

Despite appearing to be a simple task, the nonlinearity and presence of
many irrelevant features make the problem harder, as can be seen by the
results in the corresponding columns of Table 2. Nevertheless, the neural
networks were capable of reaching satisfactory predictions. This does not
necessarily mean that the networks learned the expected behavior, however.
They can be overfitting using all available inputs, or learning misguiding
correlations that may appear between the random inputs over the limited
sampling, as happened to the decision tree in Fig. 4.

For a decision tree, it is trivial to check the input features being consid-
ered, but the process is trickier for neural networks. However, we can inspect
them using relevance aggregation as described in Section 3, and for the same
data that originated the tree in Fig. 4, we obtain from the neural network
the relevance scores in Fig. 5a (visualized with the table heatmap detailed
in Section 3.4). This heatmap shows that only two input features received
large scores (0.919 and 0.897), and the same is true if the classes are treated
separately. These two high scoring features are indeed the two truly rele-
vant features chosen for computing the XOR function when the dataset was
created. It is now possible to know that the neural network made a better
prediction and correctly learned the relevant rules from the original data.
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Table 2: Classification and regression performance of different algorithms for
all datasets. This table presents the average F1 score (for classification) and MSE (for
regression) and standard deviation from stratified 10-fold cross-validation (3-fold for the
breast cancer dataset) for the trained neural networks (NN), decision trees (DT), and
support vector machines (SVM). It also lists the results for SVM trained only with the
top ranked features from relevance aggregation (RelAgg), DT, mMRM, and Kruskal-Wallis
Test (KW). Retraining SVM using the top ranked features from relevance aggregation
always improved its predictions. Number of top ranked features are 2 (XOR), 5 (synthetic,
e-commerce, ENEM), and 10 (breast cancer). The best values are in bold.

Classification (F1 score) Regression (MSE)
XOR 3-classes Breast cancer E-commerce XOR Synthetic ENEM

NN 0.982 ± .021 0.691 ± .048 0.900 ± .029 0.759 ± .013 0.018 ± .019 3.295 ± .384 8392.814 ± 1186.210
DT 0.499 ± .069 0.829 ± .023 0.599 ± .039 0.793 ± .015 0.266 ± .018 5.423 ± .904 6630.980 ± 268.285
SVM 0.629 ± .000 0.696 ± .000 0.905 ± .000 0.669 ± .000 0.202 ± .000 4.030 ± .000 7563.633 ± .000
SVM (RelAgg) 1.000 ± .000 0.922 ± .000 0.956 ± .019 0.777 ± .001 0.010 ± .000 1.612 ± .327 6354.633 ± 200.827
SVM (DT) 0.653 ± .174 0.916 ± .004 0.843 ± .086 0.763 ± .020 0.325 ± .014 2.429 ± .000 6128.120 ± 79.470
SVM (mRMR) 0.515 ± .005 0.922 ± .001 0.514 ± .023 0.312 ± .126 - - -
SVM (KW) 0.513 ± .006 0.922 ± .000 0.812 ± .078 0.780 ± .000 - - -

IRR012 ≤ 0.5
gini = 0.5

samples = 450
value = [225, 225]

class = ZERO

IRR006 ≤ 0.5
gini = 0.492

samples = 227
value = [128, 99]
class = ZERO

True

IRR014 ≤ 0.5
gini = 0.492

samples = 223
value = [97, 126]

class = ONE

False

IRR049 ≤ 0.5
gini = 0.498

samples = 107
value = [50, 57]
class = ONE

IRR017 ≤ 0.5
gini = 0.455

samples = 120
value = [78, 42]
class = ZERO

gini = 0.492
samples = 48

value = [27, 21]
class = ZERO

gini = 0.476
samples = 59

value = [23, 36]
class = ONE

gini = 0.363
samples = 63

value = [48, 15]
class = ZERO

gini = 0.499
samples = 57

value = [30, 27]
class = ZERO

IRR032 ≤ 0.5
gini = 0.499

samples = 117
value = [61, 56]
class = ZERO

IRR019 ≤ 0.5
gini = 0.449

samples = 106
value = [36, 70]
class = ONE

gini = 0.437
samples = 59

value = [40, 19]
class = ZERO

gini = 0.462
samples = 58

value = [21, 37]
class = ONE

gini = 0.497
samples = 54

value = [25, 29]
class = ONE

gini = 0.334
samples = 52

value = [11, 41]
class = ONE

Figure 4: Decision tree generated for the XOR problem (classification). It failed
to learn the truly relevant inputs from the data (same partition from Fig. 5a) and instead
relies on seven irrelevant inputs. The trees were trained with Scikit-learn, with a minimum
of 0.1 samples per leaf, balanced class weights, and Gini index.

This idea can be summarized with the “selection accuracy” metric. In
the case of relevance aggregation, the selection accuracy can be measured as
the ratio of truly relevant input features that received the highest relevance
scores. For the example in Fig. 5a, the selection accuracy of relevance ag-
gregation is 1.0 because the two features used to compute the XOR function
are placed in the first and second positions in the ranking of the scores. For
other ranked based feature selection algorithms, this metric can be computed
in the same way. For decision trees, we define the “selection accuracy” as
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SCORE ZERO ONE …
REL002 0,919074 0,922061 0,916088 1 1 1… 0 0 0
REL001 0,897107 0,991642 0,802571 1 1 1… 1 1 1
IRR003 0,062693 0,022876 0,10251 1 1 1… 0 0 0
IRR007 0,046291 0,010313 0,082269 1 1 1… 1 1 1
IRR045 0,044367 0,013873 0,074861 1 1 0… 0 1 0
… … … … … … … … … … …
IRR005 0,004698 0,003099 0,006297 1 1 1… 0 1 0

(a) Table heatmap for XOR (classification) dataset.
SCORE 0 1 2 … … …

REL002 0,38 0,36 0,75 0,20 1,20 -0,55… 0,11 -0,94… 2,33 0,20…
RED005 0,27 0,14 0,24 0,57 -1,67 -1,83… -0,76 -1,21… 4,01 1,46…
REL001 0,26 0,18 0,17 0,55 -2,11 -2,25… -1,61 -1,72… 0,19 0,99…
REL003 0,22 0,52 0,20 0,11 -1,06 0,74… 0,66 1,34… 2,11 0,50…
RED004 0,07 0,04 0,09 0,09 -0,22 -0,15… -0,25 -0,14… -0,93 -0,08…
IRR083 0,03 0,02 0,02 0,05 -0,14 -0,27… -1,86 1,12… -0,84 1,23…
… … … … … … … … … … … … … …
IRR801 0,02 0,02 0,02 0,03 0,50 -0,89… -0,50 0,86… 0,67 -2,03…
IRR082 0,01 0,01 0,01 0,00 -0,42 -0,27… 0,50 0,65… 0,57 -0,43…

(b) Table heatmap for synthetic 3-classes dataset.

Figure 5: Excerpt of the table heatmaps for the XOR (classification) and 3-
classes synthetic data. Figure (a) shows the partial table heatmap (Section 3.4) for
a neural network trained on the XOR (classification) dataset. The rows are ordered by
the score value, and each represents one input feature (the complete table would contain
50 rows). The first column has the input features labels, columns “SCORE”, “ZERO”,
and “ONE” have the relevance scores for the whole dataset, only class “zero” (when the
XOR of the relevant inputs is 0), and only class “one” (when the XOR of the relevant
inputs is 1), respectively. The higher the score, the darker the background color. The last
six columns present three samples (the complete table would contain 500 samples) from
each class (“zero” marked in green and “one” marked in orange), and its cells contain the
original feature value. Darker red backgrounds represent larger positive relevance values,
darker blue represents larger negative relevance values, and white represents relevance
values close to zero (“irrelevant”). Figure (b) shows the partial table heatmap for a neural
network trained on the synthetic 3-classes dataset, following the same representation of
Figure (a). From this table, it is clear that the neural network deemed different input
features relevant for each class, based on the score values in columns “0”, “1”, and “2”.

the ratio of truly relevant features present in the nodes of the tree.
We compare the selection accuracy of neural networks (based on their

relevance aggregation scores) over stratified 10-fold cross-validation against
three other algorithms: (i) decision trees, (ii) minimum Redundancy Maxi-
mum Relevance Feature Selection (mRMR)2 [15], and the Kruskal–Wallis H
test (SciPy implementation). The results in the first two columns of Table 3
show that the neural networks were always able to learn the XOR function
from the correct input features, for both the classification and regression

2http://home.penglab.com/proj/mRMR/
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Table 3: Selection accuracy for the synthetic datasets. This table presents the
average “selection accuracy” and standard deviation for four feature selection algorithms
on four synthetic datasets. We define the “selection accuracy” as the ratio of the r truly
relevant features ranked in the r first positions on the selection of each algorithm. The
exception is the decision tree, which does not rank the selection. In this case, the selection
accuracy is defined as the ratio of the r truly relevant features present in the nodes of the
final tree. Values were not computed for mRMR and Kruskal-Wallis test on regression
tasks, as they compute the difference between classes. The best results are in bold.

XOR (classification) XOR (regression) Synthetic 3-classes Synthetic regression
RelAgg 1.00 ± .00 1.00 ± .00 1.00 ± .00 0.97 ± .07
Decision Tree 0.35 ± .39 0.00 ± .00 0.78 ± .06 0.75 ± .00
mRMR 0.00 ± .00 - 0.80 ± .00 -
Kruskal-Wallis 0.05 ± .15 - 0.94 ± .09 -

variants. The other algorithms struggled in this task.
Besides the XOR problem, we also created a synthetic 3-classes dataset

with 1,000 samples using the algorithm from [22; 35]3. This dataset has 1,000
input features, from which only five are informative for the class separation
(known to the user, but not to the machine learning models), and the re-
maining are irrelevant. Similarly, we also made a synthetic regression dataset
using [13; 35]4, with 1,000 samples and four informative input features among
the total of one hundred.

The predictive performance of the trained neural networks for these datasets
is shown in Table 2, and Fig. 5b is an example of table heatmap for a neural
network trained on the synthetic 3-classes data. As with the XOR data, using
relevance aggregation, the truly relevant features were consistently placed in
the top positions, receiving the largest relevance scores (Table 3).

Besides the table heatmaps present in Fig. 5, in Section 3.4 a second visu-
alization method called “weighted t-SNE” was described, and Fig. 6 shows its
usefulness. A clearer data distribution emerges by weighting the distances
of the data points with the corresponding relevance scores of each dimen-
sion. It is possible to see the XOR problem’s well-known pattern, the classes
from the synthetic dataset disentangle, and the samples from the regression
dataset are placed in a gradient of the target values.

However, these are not “perfect” representations of the real relationship
between the points, as evidenced by the XOR visualization. If they were

3scikit-learn.org/stable/modules/generated/sklearn.datasets.make classification.html
4scikit-learn.org/stable/modules/generated/sklearn.datasets.make sparse uncorrelated.html
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Figure 6: Visualization of the synthetic datasets with t-SNE and weighted t-
SNE. The first row (a, c, e, g) shows the regular t-SNE visualization for the four synthetic
datasets. Each point represents one sample. For classification tasks the color corresponds
to the classes, for regression tasks the color is a gradient from the lowest target value
(dark blue) to the largest target value (dark red). Because most of the input features
are random, there is no clear separation in the plots. The second row (b, d, f, h) shows
the same samples visualized with weighted t-SNE (Section 3.4) after the training of a
neural network. In this case, the distance between the points was scaled following the
relevance score of each dimension according to the network. As can be seen, clear clusters
or gradients emerge, but some noise remains.

indeed perfect, all samples would collapse to only four points in the chart.
This noise is due to the “leaking” relevance that the neural network assigns
to irrelevant input features, as shown by the third row downwards in Fig. 5a.
We hypothesize that these distributions are more likely to represent how the
neural network “perceives” the data after training than the visualization with
regular t-SNE, in which the points are all entangled in a single cluster.

So far, we demonstrated that relevance aggregation is capable of retrieving
the truly relevant input features from a dataset. This does not automatically
prove the neural network relies more on these inputs than the others, which
was the first question at the beginning of this subsection. Moreover, Fig. 5b
indicates that the neural network is using distinct subsets of input features
for making predictions about each class (the score rankings are different).
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To check that the relevance scores obtained from relevance aggregation
actually match the practical importance of the input features for the trained
neural networks, we use a similar approach as the perturbation analysis pre-
sented in Samek et al. [39]. In the original paper, perturbation analysis was
used to validate and compare the relevance heatmaps created with LRP and
other interpretability algorithms on convolutional neural networks trained on
image data. We adapted it to the models and data studied in this work.

The goal is to evaluate the impact of systematically “erasing” input fea-
tures on the predictive power of trained neural networks, measured on the
test data by the F1 score or the MSE. “Erasing” an input feature in this
context means to manually set its value to zero on all samples being fed to
the network. The value of zero was chosen because, after the initial data nor-
malization, all input features have a mean equal to zero. If the scores from
relevance aggregation reflect the importance of the features to the prediction,
we expect that erasing input features from the largest to the smallest score
will produce a drastic and continuous drop on the network classification or
regression capacity. Analogously, erasing the input features in the reverse
order should not affect the predictive power as much.

Taking the synthetic 3-classes dataset as an example, we can see this exact
behavior taking place in Fig. 7a. Erasing the input features with larger scores
leads to abrupt drops in the F1 score (blue line shows the average for ten
networks). By contrast, erasing the input features with small scores can
improve the model performance (red line), while erasing in a random order
stays in the middle ground, gradually degrading the predictions (black line).
This is evidence that most of the predictive capacity of the networks comes
from the input features with high scores, and very little from the features
with low scores.

Figs. 7b, 7c, and 7d show the same behavior but at a class level. In
these figures, each line is the average F1 score of a specific class, and each
plot shows the impact of erasing input features according to the class-specific
scores (as seen in Fig. 5b). The classes are more affected by erasing input
features according to their own scores. A larger decrease in the F1 score
illustrates this, thus collaborating to the claim that relevance aggregation is
identifying the features used at a class level and that the networks are using
distinct input features to predict each class.

Finally, Adebayo et al. [1] show that some interpretability methods are
independent of the model and the data generating process, thus failing in
tasks that are sensitive to them, such as explaining the relationship between
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Figure 7: Perturbation analysis for neural networks trained on the synthetic 3-
classes dataset. Figure (a) shows the average (10-fold cross-validation) impact of erasing
input features (turning them to zero) on the F1 score. The solid blue line represents erasing
the features from the largest relevance score to the smallest. The solid red line represents
erasing the features in the reverse order. The solid black line represents erasing in random
order. The dashed lines are the standard deviation. Figures (b), (c), and (d) show the
average F1 score of each class independently. In each figure, the input features are erased
following the score ranking (largest to smallest) of the correspondent class (thicker line).
The standard deviation was omitted for clarity.
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inputs and outputs as learned by the model. In their results, the input
values dominate the results of methods like ε-LRP. To show that relevance
aggregation is sensitive to changes in the model or the data, we adapted two
experiments performed by Adebayo et al. [1] and used the synthetic 3-classes
dataset and three repetitions.

For the parameter randomization test, we compare the rank of features
obtained with networks trained on the data and networks with random
weights and biases. If relevance aggregation is sensitive to model param-
eters, changing them should also change the ranking of features. If the result
does not change, the explanation may be only sensitive to the data or the
network topology. Using the Spearman Rank correlation to compare the
ranks between networks with trained and random parameters, we obtained
an average coefficient of 0.0067 (p < 0.05), so the results are not correlated,
and relevance aggregation is sensitive to the parameters of the model. For
the data randomization test, we compare the feature relevance from net-
works trained on the original data and networks trained on a version of the
dataset with randomly permuted labels. If an explanation is not sensitive
to this change, it could not explain the relationship between samples and la-
bels. Using the Spearman Rank correlation to compare the results from the
two groups, they are not correlated with −0.0114 (p < 0.05), thus relevance
aggregation is sensitive to the relationship between samples and labels.

4.2. Breast cancer gene expression

We now move to the application of relevance aggregation to neural net-
works trained on real-world data. The first dataset comes from the Cu-
rated Microarray Database (CuMiDa) [16]5, a repository containing cancer
microarray datasets assembled for machine learning research. This specific
dataset has the expression levels of over 50, 000 genes from tissues with one of
five types of breast cancer (HER, basal, cell line, luminal A, and luminal B),
plus samples from healthy (“normal” in the dataset) tissue. The selection of
genes from microarray data is needed because of the presence of irrelevant,
redundant, and noisy expressions, and as a way for early tumor detection,
cancer discovery, cancer diagnosis, and prognosis [2; 11].

Table 2 lists the average test F1 score of different classifiers trained on
this data. The perturbation analysis presented in Fig. 8 shows that erasing

5http://sbcb.inf.ufrgs.br/cumida
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the input features with the highest relevance scores causes a greater drop
in the average quality of predictions than erasing randomly picked input
features or the ones with the lowest scores, as was the case with the synthetic
data (Fig. 7a). However, it was necessary to erase a greater portion of the
input features before the drop becomes noticeable, what suggests that the
neural networks are relying on thousand of input features to make predictions
instead of identifying a small subset of informative inputs.
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Figure 8: Perturbation analysis for neural networks trained on the breast cancer
dataset. Figure details as in Fig. 7a.

Nevertheless, as done in Fig. 7, it is possible to perform the same analysis
dividing the data to see if the neural networks learned different rules for each
class. As reported in Fig. 9, this appears to be the case, with the average
F1 score of an individual class dropping much sooner when its input features
with higher relevance scores are erased. In contrast, the performance of other
classes remains stable for longer. The difference in the relevance assigned to
input features for each class is further demonstrated in Fig. 10, which shows
for a single neural network how the score values can change between classes.

It is also possible to note the effect of the class-specific relevance scores
in the weighted t-SNE plots in Fig. 11, for the same network in Fig. 10. For
instance, using the scores from the classes luminal A or luminal B leads to
a clearer separation of their samples in the visualization (Figs. 11f and 11g).
The cell line class is also better clustered with weighted t-SNE, while in the
original, it is divided into two (Fig. 11a).

Unfortunately, with real-world data, it is not trivial to compute the se-
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Figure 9: Perturbation analysis for neural networks trained on the breast cancer
dataset, divided by class. Each figure corresponds to the average F1 score for all classes
when erasing input features following the relevance scores of a specific class (thicker line).
The standard deviation was omitted for clarity. Figure details as in Fig. 7.

SCORE HER Basal Cell line Luminal A Luminal B Normal
240701_at 0,416 0,636 0,585 0,501 0,297 0,477 0,196
223259_at 0,390 0,567 0,765 0,412 0,241 0,447 0,184
205635_at 0,389 0,512 0,327 0,371 0,360 0,280 0,556

206560_s_at 0,385 0,287 0,679 0,421 0,266 0,317 0,475
219415_at 0,383 0,256 0,773 0,380 0,270 0,291 0,534

… … … … … … … …
217051_s_at 0,030 0,055 0,162 0,033 0,057 0,065 0,001

Figure 10: Excerpt of the table heatmaps for the breast cancer data. Only the
global relevance scores and relevance scores of the six classes for the top and bottom input
features are shown. Figure details as in Fig. 5.

lection accuracy, as was in Section 4.1. Nevertheless, we can estimate the
quality of the feature ranking by using only the input features with the high-
est scores to train another classifier and checking if its performance improved.
It is assumed that gene selection performed with a classifier is specific to that
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Figure 11: Visualization of the breast cancer data with t-SNE. Figure (a) shows the
data using regular t-SNE, and Figure (b) using weighted t-SNE with the global relevance
scores. Figures (c) to (h) show the data using weighted t-SNE with the relevance scores
of each class. Points with different colors and symbols represent each class. Figure details
as in Fig. 6.

model (in this case, the neural network), so there is no assurance that the
selected genes will perform well in other predictors [2]. The chosen algorithm
for the comparison was the support vector machine (SVM), as it is considered
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the state-of-the-art in gene expression classification [2; 21; 43].
Table 2 shows the average F1 score of an SVM trained on this dataset with

all input features, and with only the top class ranked features from relevance
aggregation and other feature selection algorithms. As can be seen, for this
dataset, the use of genes selected with relevance aggregation improved the
average performance of the SVM, even more than mRMR and the Kruskal-
Wallis H test, that had already been used for this specific task [15; 21].
Furthermore, for all datasets, the SVM performance was improved by first
selecting features with relevance aggregation (Table 2), which suggests that
the ranking of features can be generalized. It has been argued that SVMs
are insensitive to large numbers of irrelevant genes, and that feature selec-
tion could degrade their accuracy [43]. These results, however, indicate that
neural networks can select features that improve SVMs predictions, which
was also suggested by Grisci et al. [21].

4.3. E-commerce

The second real-world data being experimented on regards the purchasing
intention of an e-commerce website visitors using session and user informa-
tion6. This is a binary classification task with numerical and categorical
input features. Each of the 12,330 samples corresponds to a different user
over one year, in which 84.5% did not complete a shopping order, and the
rest completed it [38].

The average classification performance of different algorithms trained on
this data is shown in Table 2. As happened in all experiments, using the top
five features with the highest relevance score ranking according to relevance
aggregation increased the F1 score of another classifier (SVM). The results of
inspecting a neural network using relevance aggregation are shown in Fig. 12.
The input feature with the highest relevance score in Fig. 12a is the “Page
Value”, a metric computed by “Google Analytics” that represents the average
value of the web page visited by a user before a shopping transaction.

According to Sakar et al. [38], that used filter algorithms such as mRMR
and mutual information to evaluate the discriminating information about
the intent of the visitor carried by each input feature, “Page Value” is indeed
the most informative. However, the second input feature with the highest
relevance score in Fig. 12a, “Product Related”, although also related to the

6archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset
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SCORE False True …
PageValues 0,79 0,90 0,70 0,00 0,00 3,46… 0,09 2,43 25,00
ProductRelated 0,18 0,09 0,38 170,00 21,00 429,00… 69,00 117,00 22,00
Administrative 0,13 0,07 0,24 5,00 0,00 19,00… 12,00 2,00 13,00
TrafficType_14 0,09 0,04 0,17 0,00 0,00 0,00… 0,00 0,00 0,00
TrafficType_9 0,08 0,05 0,15 0,00 0,00 0,00… 0,00 0,00 0,00
ProductRelated_Duration 0,08 0,04 0,19 5.639,22 706,70 9.661,59… 2.269,73 4.185,10 1.525,00
… … … … … … … … … … …
Browser_4 0,00 0,00 0,00 0,00 0,00 0,00… 0,00 0,00 0,00

(a) Table heatmap for e-commerce dataset.
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Figure 12: Visualization of the results with the e-commerce dataset. Figure (a)
shows an excerpt from a table heatmap of one of the neural networks—the columns “False”
and “True” show how the score changed for the two classes. Figure (b) and (c) show the
t-SNE of the data before and after weighting the distances using the relevance scores.
Figures details as in Fig. 5 and 6.

class variable, was ranked in the lower positions by the algorithms in Sakar
et al. [38]. This was due to the high correlation of this feature with the already
selected “Page Value”. Distinctly from these algorithms, the neural network
in Fig. 12 is not necessarily penalizing the redundancy between features, even
though it is made clear from the relevance scores that “Page Values” is the
major contributor to the network prediction.

4.4. Brazilian National High School Exam

The final experiment was on data from the Brazilian “Exame Nacional do
Ensino Médio” (National High School Exam) or ENEM from 2016. ENEM is
an annual nationwide exam organized by the Ministry of Education consisting
of multiple-choice questions about languages, math, natural sciences, and
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humanities, plus an essay writing. Among other uses, the results from ENEM
are used in the application for most public and some private universities in
Brazil [26].

This specific dataset7 comes from the Brazilian contest website “Code-
nation”8. The task at hand is to learn regression by predicting the math
exam scores of over 13 thousand candidates using hundreds of personal, ed-
ucational, socioeconomic, and demographic input features. This data can be
real-valued, ordinary, or categorical.

As with the previous experiments, the predictive results from the trained
neural networks are in Table 2, and the use of the ten input features with the
highest relevance score was able to decrease the MSE of an SVM trained on
the same data. Fig. 13 shows that erasing the input features by the decreasing
order of their relevance score also causes an increase of the neural networks’
MSE. Fig. 14a is an example of a table heatmap for a neural network trained
on this data, in which it is possible to see the difference in scores between
samples with target value between zero and 700, and 700 and 952. Fig. 14c
shows a weighted t-SNE with the same samples gradient behavior seen in
Fig. 6h.

We highlight the two top-ranked input features from Fig. 14a. The first,
with a relevance score of 0.97, was the candidates’ score in the natural sci-
ences exam. This comes as no surprise since the exam grades in natural
sciences and mathematics are correlated in the dataset (0.584). In another
application, this feature would probably be removed from the training. How-
ever, we left it as both a “sanity check,” and a reminder that by using rele-
vance aggregation, one can identify such features that may require attention.

The second highest relevance score was attributed to the input feature
encoding the gender of the candidates, that in the dataset was either male
or female. What this suggests is that the neural network learned to use the
gender of a candidate to predict their math exam grade. This can be seen
as a case of machine bias, a recent concern in both academia and industry,
where trained machine learning or statistical models reproduce controversial
societal asymmetries, often unknowingly to their designers [36]. Machine
bias often comes in the form of gender or racial bias, and can be aggravate
by the use of black-box models, as they hide the undesirable assumptions

7https://www.kaggle.com/davispeixoto/codenation-enem2
8https://www.codenation.dev/
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Figure 13: Perturbation analysis for neural networks trained on the ENEM
dataset. Figure details as in Fig. 7a. Note that because the y-axis is the MSE, an
increase in the values shows the deterioration of the predictions.

being made [29; 36].
In the specific case of ENEM, a study of a similar exam system indi-

cates that in standardized test scores males tend to outperform females, even
though females significantly outperform males in high school grade point
average, showing that the gender gap can be impacted by the assessment
method used by universities [40]. Another study shows that ENEM results
can impact the female students’ choice probabilities of college majors [26].

The gender, racial, and social inequalities among the scores of students
taking ENEM has also been discussed in the Brazilian media9. According to
the reports, that used the exam from 2016 as well, social and cultural factors
are associated to the gender gap in the mathematics and natural sciences
results. Data from PISA, the world largest international exam, organized
by the Organisation for Economic Co-operation and Development (OECD),
also reveals that parents and teachers show different levels of expectation for
male and female students, and that girls report being less confident in their
mathematical abilities. In countries where this inequality received attention,

9https://infograficos.estadao.com.br/educacao/enem/desigualdades-de-genero-e-raca/
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SCORE 0.0 to 700 700 to 952 328.1 338.7 339.6 … 895.5 897.1 916.7
NATURAL SCIENCES 0,97 0,95 0,99 509,60 382,70 471,70… 746,30 751,60 744,20

GENDER 0,66 0,70 0,62 1,00 1,00 1,00… 0,00 0,00 0,00
Q020 0,65 0,70 0,61 1,00 1,00 1,00… 1,00 0,00 0,00
Q025 0,63 0,66 0,60 1,00 0,00 0,00… 1,00 1,00 1,00
Q021 0,58 0,67 0,50 0,00 0,00 0,00… 0,00 1,00 0,00

… … … … … … … … … … …
Q042.H 0,01 0,02 0,01 0,00 0,00 0,00… 0,00 0,00 0,00

(a) Table heatmap for ENEM dataset.
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Figure 14: Visualization of the results with the ENEM dataset. Figure (a) shows
an excerpt from a table heatmap of one of the neural networks. The columns “0.0 to 700”
and “700 to 952” show how the score changed when isolating the largest target values.
Figure (b) and (c) show the t-SNE of the data before and after weighting the distances
using the relevance scores. Figures details as in Fig. 5 and 6.

the gap in mathematics ceased to exist [33].
Usually it is not desirable to reproduce such historical biases in future

predictions, or at least this component of the decision process should be
known to the model creators and users. The biased predictions can have
the unintended consequence of reinforcing the asymmetry in expectations
for different groups. The use of interpretability algorithms can help to shine
light on these issues.

5. Conclusion

Neural networks have become a standard tool in several machine intelli-
gence applications, but their lack of interpretability is still a bottleneck for
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their wide adoption. Several works focus on explaining the predictions of
neural networks, but few take into consideration the use of tabular data. To
contribute to this topic, we presented relevance aggregation, an algorithm
that builds upon previous interpretability methods by aggregating the rele-
vance computed from several samples. Our method was tested in a variety of
synthetic and real-world datasets and worked with different types of tabular
data for both classification and regression tasks. The results show that rel-
evance aggregation can correctly identify which input features are the most
important for the network’s predictions and that this set of features can be
distinct for each class.

We also presented two ways to visualize the results from relevance aggre-
gation. We suggest that weighted t-SNE can better represent the patterns
learned by a neural network, and thus lead to a better comprehension of the
models.

The outcome of relevance aggregation can also help to identify relevant
features from the original data, serving as a way to perform feature selection
or knowledge discovery. The top-ranked features were consistently able to
improve the performance of another classifier (SVM). However, the selection
quality for knowledge discovery strongly depends on the classifier’s quality,
so the relevance scores should be seen as an indication of “true” relevance
rather than a decisive conclusion about the nature of the original data. The
relevance scores should always be taken into account together with the model
performance metrics [9]. Nevertheless, even in the case of poorly trained neu-
ral networks, relevance aggregation can help identify incorrect or irrelevant
rules or machine bias.

Data and code availability

The necessary source code and datasets used in the experiments, and
the trained neural networks models and results can be accessed in GitHub:
https://github.com/sbcblab/RelAgg.git. The microarray data used in this
work is available in the CuMiDa database: http://sbcb.inf.ufrgs.br/cumida.
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