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Abstract

Feature selection algorithms are frequently employed in preprocessing

machine learning pipelines applied to biological data to identify relevant fea-

tures. The use of feature selection in gene expression studies began at the end

of the 1990s with the analysis of human cancer microarray datasets. Since

then, gene expression technology has been perfected, the Human Genome

Project has been completed, new microarray platforms have been created and

discontinued, and RNA-seq has gradually replaced microarrays. However,

most feature selection methods in the last two decades were designed, evalu-

ated, and validated on the same datasets from the microarray technology's

infancy. In this review of over 1200 publications regarding feature selection

and gene expression, published between 2010 and 2020, we found that 57% of

the publications used at least one outdated dataset, 23% used only outdated

data, and 32% did not cite data sources. Other issues include referencing data-

bases that are no longer available, the slow adoption of RNA-seq datasets, and

bias toward human cancer data, even for methods designed for a broader

scope. In the most popular datasets, some being 23 years old, mislabeled

samples, experimental biases, distribution shifts, and the absence of classifica-

tion challenges are common. These problems are more predominant in publi-

cations with computer science backgrounds compared to publications from

biology and can lead to inaccurate and misleading biological results.
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1 | INTRODUCTION

Feature selection comprises a wide array of algorithms and methods employed to create, among other uses, more repre-
sentative datasets by filtering noisy, irrelevant, or redundant samples, leading to optimized machine learning training
(Ang et al., 2016; Lazar et al., 2012; Tadist et al., 2019). As part of a knowledge discovery pipeline, feature selection is
generally used to identify which features in the original data can convey relevant information. For example, feature
selection was used to identify hub genes of hepatocellular carcinoma (Li & Xu, 2019), predict bioluminescent proteins
(Kandaswamy et al., 2011), cluster single-cell data (Ranjan et al., 2021), and as part of a pipeline for determining battery
capacity fade (Roman et al., 2021).

Because of this characteristic, feature selection became one of the most used approaches in Bioinformatics, fre-
quently employed to process high-dimensional gene expression data (Ang et al., 2016). Gene selection is the name given
to the application of feature selection to transcriptomic data, allowing the discovery of relevant expressed genes capable
of separating samples from different populations or target annotations (i.e., the samples classes) (Lazar et al., 2012). Rel-
evant genes that can satisfactorily classify a given condition are sometimes referred to as informative genes, which
could be used in diagnosing diseases or as potential drug targets (Lazar et al., 2012). Therefore, in recent years, feature
selection has been discussed as a tool for uncovering potential tumoral biomarkers, allowing reliable diagnosis and
prognosis of different cancer types (Grisci et al., 2018, 2019). Numerous works provide complete reviews of feature
selection algorithms and their application to gene expression data (Ang et al., 2016; Bol�on-Canedo et al., 2014;
Boulesteix et al., 2008; Feltes et al., 2018; Lazar et al., 2012; Osama et al., 2022; Saeys et al., 2007). According to a survey
by Osama et al. (2022), between 2010 and 2021, the number of publications on gene selection increased by 1.8-fold, and
the citations by 135.5-fold.

However, discussing how and why feature selection can be applied to gene expression data goes beyond which algo-
rithms should be employed. Because the accuracy, performance, and final results of any feature selection algorithm
depend on the nature and quality of the initial input, it is indispensable to explain how gene expression data were
developed and analyzed over time—a topic absent from most discussions in the field.

Large-scale gene expression techniques emerged in the mid-90s and started even before the Human Genome Project
(HGP), which was finished in 2003, covering about 92% of the human genome (Figure 1). Only in 2022 did new sequenc-
ing technologies providing long-read sequences allow the completion of the human genome (Nurk et al., 2022). Since the
development of microarray technology, concerns regarding poor reproducibility between different microarray platforms
have emerged. One of the reasons is related to the chosen probes and probe sets (Liu et al., 2010). Probes are designed to
hybridize to a messenger RNA (mRNA) molecule based on expressed sequence tag, complementary DNA (cDNA), or
mRNA deposited in the NCBI repository (Liu et al., 2010). In the early years of microarray, it was not unusual to find pro-
bes prone to non-specific hybridization, especially in non-well-documented organisms, where the source sequence used to
design the probe was more likely to have inaccurate or incomplete annotations, presence of sequencing artifacts, and
redundant sequences (Liu et al., 2010). For example, 30%–40% of probes from Affymetrix GeneChip (Figure 1), the most
popular microarray platform, showed discrepancy with gene and transcript definitions (Dai et al., 2005; Gautier, Møller,
et al., 2004), where more than 5000 probes presented cross-hybridization issues due to splice variants or closely related
genes (Harbig et al., 2005). Compared to data available today, older chips could be composed of 5000–8000 probes,
whereas the modern, most frequently used ones can reach between 22,000 and 70,000 probes, depending on platform and
manufacturer. Likewise, many of those probes were discontinued due to their inaccuracy.

As seen in Figure 1, there is a 9-year gap between the creation of Affymetrix, the most used microarray platform,
and the end of the HGP. The computational analyses of microarray data started at the end of the 1990s, and feature
selection became one of the standard methods of data investigation in the field (Bol�on-Canedo et al., 2014; Saeys
et al., 2007). The first significant application of feature selection and machine learning to gene expression data was
pioneered in 1999 by Alon et al. (1999) and Golub et al. (1999); hence, 4 years before the HGP finishing and the release
of the official version of the human genome, 3 years from the creation of the Gene Expression Omnibus (GEO) database
(Edgar et al., 2002), the largest gene expression database, and 2 years before the release of the initial draft of the human
genome. At the time, the successful application of the classification task to gene expression data was a great leap that
invariably opened the door for what is now one of the most fertile grounds for computational biology applied to omics
data. They were followed by Bhattacharjee et al. (2001) and Khan et al. (2001) in 2001, and Shipp et al. (2002) in 2002
(Mramor et al., 2007). Despite all of these authors focusing on the study of distinct types of cancer, this shared object of
research settled a clear bias toward the selection of human cancer datasets for the experiments of later feature selection
research.
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Also, during the 2000s, innovations in data analysis and feature selection were being developed (Mramor et al., 2007),
where the univariate paradigm was the most popular type of feature selection algorithm. These algorithms were fast and
scaled well with the increased size of datasets but did not account for feature dependencies (Bol�on-Canedo et al., 2014).
Consequentially, other methods, such as wrappers or statistical tools, were soon adapted or developed to deal with the
new technology (Bol�on-Canedo et al., 2014; Mramor et al., 2007; Saeys et al., 2007). However, as gene expression technol-
ogy advanced, with new manufacturers being inserted into the market and new microarray platforms being continuously
created—and discontinued—most algorithms being developed did not follow. They kept being designed, evaluated, and
validated with the same datasets from the days of the microarray technology infancy in mind.

As it is standard in the Computational Sciences, the classification success of new algorithms must be compared to
what was previously published. Thus, some earlier datasets (fully discussed in Section 4), were used as inputs, and their
results as the basis for “successful” accuracy results. Unfortunately, while new platforms kept being updated with the
continuous genetic knowledge being published and deposited in databases and new datasets repeatedly made available
at GEO, the same old datasets kept being solely employed to train and test new algorithms. The culture of reusing the
same datasets did not change, even after RNA-seq became popular around 2010 (Figure 1).

Errors and biases in popular datasets used for analyses and benchmarks in machine learning and bioinformatics are
not unheard of (Liang et al., 2022; Nature, 2022). For example, Northcutt et al. (2021) identified that, on average,
around 3.4% of the labels in the 10 most used datasets of computer vision, natural language, and audio contain errors.
The authors discuss that because such datasets are used to validate findings or to measure the state-of-the-art, even a
small percentage of data errors can lead to incorrect conclusions about the performance of new methods. For instance,
a low increment in the accuracy of a dataset could be coming from the model overfitting the wrong labels present in
the dataset. These errors and biases can also impact computational methods' later usefulness or safety in real-world
applications. In a systematic review of machine learning models trained for the detection and prognostication of coro-
navirus disease 2019 (COVID-19) from chest radiography or chest computed tomography images, Roberts et al. (2021)
discovered that none could be used in clinical practice because of methodological flaws or underlying biases. Among
the reported issues was bias due to the small sampling size of patients with COVID-19 when considering the variability
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Operator (Lasso) (Santosa & Symes, 1986; Tibshirani, 1996); Human Genome Project (HGP); Support Vector Machine (SVM) (Boser

et al., 1992); Random Forest (RF) (Ho, 1995); Serial Analysis of Gene Expression (SAGE); ReliefF (Robnik-Šikonja & Kononenko, 1997);

Waikato Environment for Knowledge Analysis (WEKA) (Holmes et al., 1994); Feature Selection Toolbox (FST); minimum Redundancy—
maximum Relevance (mRMR) (Peng et al., 2005); Feature Selective Neuroevolution of Augmenting Topologies (FS-NEAT) (Whiteson
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et al., 2011); inSilico database (inSilicoDb) (Taminau et al., 2011); Curated Microarray Database (CuMiDa) (Feltes et al., 2019);

Benchmarking of ARtificial intelligence Research: Curated RNA-seq Database (BARRA:CuRDa) (Feltes et al., 2021). Asterisk indicates

algorithms, software, and libraries commonly used or created for feature selection or hallmarks in the field.
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of large international datasets. Likewise, benchmarking studies focusing on employing fewer datasets to evaluate tasks
for which the data was not initially designed are also current issues in machine learning (Koch et al., 2021). As dis-
cussed in Sections 2 and 3, this scenario is not distant from the current application of feature selection to gene expres-
sion data analysis.

The remainder of the text is organized as follows. Section 2 describes how gene expression data (microarray and
RNA-seq) is seen from a biological and computational perspective, and discusses how researchers from both fields usu-
ally handle them. Section 3 reviews the feature selection literature to identify the most commonly used datasets and
their characteristics. Section 4 discusses some of the issues of these commonly used datasets and how they can impact
the results of new experiments. Section 5 is a comment on the challenges of creating or finding reliable databases to
share or access gene expression data for computational research and a brief review of the main online databases.
Section 6 concludes this study with perspectives for the field and recommendations for researchers and reviewers based
on our findings.

2 | DATA BETWEEN WORLDS

Computationally speaking, gene expression data is usually represented as a matrix of continuous numerical values
(Whitworth, 2010), where each row represents a sample, and each column represents a gene. In this model, a matrix
cell contains values that measure the gene expression level in that sample. Usually, the samples are categorized in bio-
logical conditions, such as the division between healthy and tumor samples, which will be compared. Gene expression
studies centered on the biological aspect of a given research question (i.e., not focused on developing a new algorithm),
being either purely wet-lab or dry-lab-derived data, will generally employ known computational tools to observe differ-
entially expressed genes (DEG). Bioinformatic analyses without creating a new algorithm are far from straightforward
or lacking complexity. There are dozens of known protocols, workflows, combined approaches, web tools, standalone
software, and R packages available for such tasks, which are also distinct between microarray and RNA-seq.

Microarrays are experiments in which predefined probes will hybridize with a biotinylated cDNA molecule and gen-
erate fluorescent light emission that can be detected by a scanner and quantified by the machine in log-intensities
values (Blalock, 2003; Epstein & Butow, 2000). A multitude of software can then analyze the raw data. For example, dif-
ferent microarray platform manufacturers such as Affymetrix, Illumina, and Agilent have their own R packages dedi-
cated to analyzing their own generated datasets, such as affy (Gautier, Cope, et al., 2004) and oligo (Carvalho &
Irizarry, 2010) for Affymetrix, illuminaio (Smith et al., 2013), beadarray (Dunning et al., 2007), and lumi (Du
et al., 2008) for Illumina, and agilp (Chain, 2021) for Agilent. In addition, limma (Ritchie et al., 2015) is also one of the
most employed R packages, with a wide range of functions for all types of platforms, especially for extracting DEG. On
top of such tools, other packages provide additional analyses and refinement options for gene expression studies, such
as the arrayQualityMetrics package (Kauffmann et al., 2008), which assesses sample quality of microarray datasets, and
biobase (Huber et al., 2015), which provides a myriad of information for different platforms, probes, and genes that
greatly aids the analysis process. Numerous other options can be found on the Bioconductor (bioconductor.org)
database.

RNA-seq significantly differs from microarrays in both technical aspects and results. Contrary to microarrays, in
which probes need to be previously designed to detect a given gene expression, RNA-seq allows the quantification of
the total RNA expression profiling in a single experiment. This technique offers the identification of novel transcripts
(de novo transcriptome assembly), allele variants (as long as they are present in the expressed genes), and analysis of
alternative splicing variants. In addition, RNA-seq reaches lower technical variability than microarray, and it is concor-
dant with other transcriptomic techniques, such as qRT-PCR (Corchete et al., 2020). With so many applications, each
scenario must be carefully evaluated to create the appropriate experimental design and bioinformatics workflow
according to the organism and the research goals. For example, to perform microRNA (miRNAs) (RNAs with 21–25
nucleotides in length) sequencing, total RNA fractionation and enrichment of miRNAs by size must be conducted dur-
ing library preparation; otherwise, they will be leached out due to their small size. Furthermore, RNA-seq can be used
as the unique transcriptome profiling method or combined with additional assays, such as CITE-seq (Stoeckius
et al., 2017) and REAP-seq (Peterson et al., 2017).

RNA-seq presents detailed steps, including RNA extraction and purification, library construction, sequencing, and
bioinformatics analysis. Each error or bias introduced in any stage can interfere with the next step, directly affecting
the sequencing quality and interpretation problems (Shi et al., 2021). The step with the highest number of biases is
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library preparation, which should receive additional attention as it can strongly affect the quality of the final data (Shi
et al., 2021). RNA-seq analysis of downstream sequencing is dependent on technology application. Still, the primary
analysis step includes quality control, read mapping (using a reference genome/transcriptome or de novo assembly) to
infer the expressed transcripts, and abundance estimation based on the number of mapped reads in the sequence region
of a transcript or gene. However, some tools perform alignment-independent transcript quantification (Conesa
et al., 2016). Thus, RNA-seq matrices are not based on log-intensity values but are on read counts.

Habitually, biologically focused works will employ classical analysis protocols or innovate how the data is analyzed
by creating new pipelines that increase the robustness of the results or by developing integrative pipelines to validate
the results using multiple computational approaches. Independently of the chosen workflow, gene expression microar-
ray analyses that aim to identify DEG will perform: (i) a background correction, which aims to remove artifacts from
the raw data; (ii) a normalization step. In this case, the normalization can be performed within the array and between
arrays, depending on the platform type; (iii) quality analysis, which will access the sample quality of the dataset.
Although highly recommended, this step is not employed by all researchers; (iv) identification of the DEG. On the other
hand, RNA-seq studies will usually have: (i) a normalization, where it is important to consider that different samples
may have different library sizes, which means that samples with larger library sizes will show more reads mapped to
each gene. Also, the gene length must be considered since longer genes will have more reads mapped to them. In this
sense, RNA-seq normalization is crucial for downstream analysis and should always consider library size and gene
length; (ii) batch effects correction, which could be minimized during experimental design but can be considered by
batch correction methods; (iii) identification of DEG. The steps mentioned above are all included in some popular
methods, such as edgeR and DESeq2, which consider raw reads as input (Conesa et al., 2016; Love et al., 2014; Robinson
et al., 2010).

Remembering that a classical biological approach focuses on finding biological novelty independently of the
employed protocol is essential. Likewise, creating new microarray and RNA-seq datasets is limited by budget and exper-
imental conditions. Consequentially, it is not guaranteed that a massive amount of samples will be analyzed either
because they might be excluded due to contamination or because of the challenges associated with acquiring them,
such as patient availability and agreement or difficult access (e.g., brain samples). Therefore, studies are organized to
have at least three control and three experimental samples, the standard in the field for proper statistical analysis.

Meanwhile, researchers from the Computational Sciences may be concerned about more practical aspects of the
data. For instance, Ang et al. (2016) and Bol�on-Canedo et al. (2014) highlight several of the challenges related to gene
expression data on feature selection and machine learning research, among them the curse of dimensionality, small
sample size (often less than a hundred), mislabeled data, imbalanced classes, presence of outliers, data complexity,
shifts in the data distribution, and cross-platform comparisons. In the latter, comparing data from different technologies
may introduce biases that make the combination of several datasets impossible due to the differences in the organiza-
tion, presentation, and values between different manufacturers. Likewise, combining different experimental conditions
should be made with caution because not all biological conditions can be safely compared. More issues are discussed in
Section 4. These challenges are not new, and several of them have been discussed since the creation of the microarray
technology (Allison et al., 2006; Leung & Cavalieri, 2003). For practical reasons, these issues may become the center of
attention in computational studies, and the biological aspects end up in the background regarding the choice of datasets
for experiments. However, standard practices to mitigate some of these challenges, such as class imbalance control and
cross-validation, cannot overcome problems in data collection (Sambasivan et al., 2021). Thus, the mindset of both
major fields involved in creating and analyzing gene expression data diverges in multiple aspects that should be consid-
ered when discussing handling datasets and applying distinct algorithms and protocols.

3 | TO TEACH A NEW MACHINE OLD TRICKS

As discussed in the previous section, there is a difference in priorities when choosing which datasets to use in experi-
ments regarding Biological or Computational Sciences. Due to the several practical challenges these datasets offer,
researchers proposing or analyzing new feature selection methods tend to stick to the already popular ones. This effect
is magnified by the available online databases (Section 5) and by the lack of standard state-of-the-art results to achieve
fair comparative analyses (Bol�on-Canedo et al., 2014). In this case, researchers usually keep using the same datasets
employed in previous publications to conduct metric comparisons. In this sense, the choice of datasets based on the
most reported cases in the literature leads to a cycle; the older and known datasets are used by newer studies solely
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because they are frequently cited (Beker et al., 2022), not because they are relevant, thus, placing the quality or rele-
vance of the data in second place.

According to their review of feature selection published between the years 2011 and 2016, Ang et al. (2016) identi-
fied the five most commonly used microarray datasets to be: (i) colon cancer by Alon et al. (1999) in 1999; (ii) leukemia
by Golub et al. (1999) in 1999; (iii) diffuse large B-cell lymphoma (DLBCL), from Alizadeh et al. (2000) in 2000;
(iv) small round blue cell tumor (SRBCT) of childhood from Khan et al. (2001) in 2001; and (v) prostate cancer by Singh
et al. (2002) in 2002. By comparing the year in which they were reviewed by Ang et al. (2016) (2011–2016) and the years
they were published (1999–2002), it is possible to note that the age gap was between 14 and 17 years.

An earlier review of microarray datasets and feature selection conducted by Bol�on-Canedo et al. (2014) in 2014
pinpointed some of the most popular microarray datasets used for experiments, but, unfortunately, the exact methodology
employed to select publications is not clear from the study. Their results compiled 64 datasets, even though some are
alternative versions of the same original data (e.g., some datasets are split into training and test sets). Alarmingly, the
original reference for three of these datasets is considered unknown. All 5 datasets identified by Ang et al. (2016) are
present in this list of 64 datasets by Bol�on-Canedo et al. (2014). It is also worth noting that most datasets listed by
Bol�on-Canedo et al. (2014) are related to human cancers. Although Bol�on-Canedo et al. (2014) published their results in
2014, the average year of creation of the listed datasets is 2002, once again showing a selection bias toward datasets from
the late 1990s and early 2000s.

We conducted an extensive literature review to verify the existence of a significant age gap between new gene
expression research and the datasets used in feature selection experiments. Our analysis resulted in a curated list of
1284 papers on feature selection applied to gene expression data, published between 2010 and 2020. We manually
extracted the information from these papers of which microarray or RNA-seq datasets were being used in the experi-
ments. As can be seen in Figure 2, during the selected period, the publication of feature selection research related to
gene expression had a steady growth, while the amount of gene expression data deposited in GEO experienced expo-
nential growth, signaling that authors had a significant increase in dataset options to choose from but chose older
datasets to train and validate their algorithms. Hence, any bias regarding the age of the employed datasets cannot be
attributed to data shortage.

Published works from the last 10 years on the topic of feature selection applied to gene expression data were gath-
ered from different databases, namely: (i) Pubmed (pubmed.ncbi.nlm.nih.gov/); (ii) IEEE Xplore (ieeexplore.ieee.org);
(iii) SCOPUS (scopus.com/home.uri); and (iv) Web of Science (clarivate.com/products/web-of-science/). Only works
written in English from January 2010 up to December 2020 were considered. To download all possible relevant works,
we only selected studies that contained the keywords “feature selection” together with either the keywords “microar-
ray” or “RNA-seq”—thus, considering a wide range of publications. We regarded full publications published in journals
and conferences; however, book chapters, abstracts, expanded abstracts, posters, and review articles were omitted. Pub-
lications that were not peer-reviewed or in preprint formats at the time of this search were not considered.

Each study was then manually, one by one, accessed to: (i) identify which and how many datasets were employed
to train/test the proposed methods; (ii) observe if the authors cited the publication of the original dataset or if they cited
an intermediate work that, in its turn, cited the original dataset; (iii) see which type of gene expression dataset the
authors tested their approach (microarray or RNA-seq); (iv) determine if the author's employed simulated datasets;
(v) recover the years the datasets were made available; (vi) identify the biological background (leukemia, breast cancer,
hepatitis, among others) and organism, such as Homo sapiens or Mus musculus, of each dataset; (vii) inspect if datasets
cited only using URLs were still available online. Datasets in which the URL led to a dead-end were excluded;
(viii) investigate if the datasets that were only cited using URLs were easily obtainable. For example, if they are only
redirected to a general website and the dataset's location is unclear. Studies in which the URLs lead to a non-specific
section of a website and the datasets could not be located were excluded. All publications and dataset information eval-
uated in our work is available in Tables S1–S3 in the Supplementary Material 2.

An overview of the collected data is shown in Table 1. Our results show that, on average, each article uses around
four distinct datasets. Among them, 32.3% of dataset citations did not cite the original study—instead, they referenced
intermediate publications, which we classified as “indirect citation.” This was prevalent in papers from repositories
focused on the Computational Science and engineering fields (39.4% of papers from IEEE Xplore) and less common in
articles from biology-focused repositories (15.5% of papers from PubMed). The same pattern appears for articles with
broken links to their data sources or studies missing the data reference altogether. This indicates a lack of concern
regarding the origin and access of gene expression data used in around one third of the publications on feature selec-
tion, especially the research from the Computational Science field. Not only does this shed light on the fact that some
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feature selection experiments may be conducted on outdated data, but it also damages the reproducibility of the find-
ings, as the information on the original datasets is missing.

The most commonly used datasets (appearing in over 10% of the publications) found in our research are listed in
Table 2. It shows that 57% of the publications used at least one of the datasets in Table 2, and 23% of them only used
datasets from this list. The top five datasets in Table 2 were used by 53% of the reviewed publications. The leukemia
dataset from Golub et al. (1999) is so prominent that it was employed by 40% of the publications and around 2% of the
publications used only this single dataset in their experiments. These popular datasets all have some characteristics in
common: they are microarray experiments from the beginning of the popularization of gene expression analysis
(between 1999 and 2002), all related to human cancers, and with a small number of features for today's standards (less
than 25,000). Thus, it is somewhat alarming that these older datasets are still widely used in the analyzed period. When
compared with the timeline in Figure 1, it is clear that these datasets predate several advancements in gene expression
technology and data repositories. As shown in Figure 3, the use of these 11 datasets did not decline and remained stable
from 2010 to 2020, following the total number of publications (Figure 2a). Details and issues of these datasets are dis-
cussed in Section 4.

TABLE 1 Summary statistics of the publications reviewed in this study.

All IEEE Xplore PubMed WOS Scopus

Number of publications 1284 375 315 47 547

Mean number of datasets per publication 3:94�3:38 3:76�3:17 3:66�3:47 3:66�3:03 4:26�3:48

Median number of datasets per publication 3 3 2 3 3

Min number of datasets per publication 1 1 1 1 1

Max number of datasets per publication 27 27 25 12 27

Indirect citationsa 32.3% 39.4% 15.5% 23.4% 37.8%

Broken linksb 7.7% 8.5% 5.3% 10.6% 8.4%

Missing referencec 5.1% 9.6% 0.3% 6.3% 4.7%

Simulated datad 6.5% 8.0% 8.5% 6.3% 4.3%

Author's datasete 4.6% 2.1% 9.2% 4.2% 3.8%

aArticles citing an intermediary study instead of the original source of the data.
bArticles containing URLs that do not work or are not up-to-date.
cArticles without proper references for the used datasets.
dArticles using data from computational simulations and not from biological experiments.
eArticles using their own datasets.
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FIGURE 2 Comparison between the growth in feature selection applied to gene expression studies and the new datasets deposited in

the GEO database. Both charts cover the period between 2010 and 2020.
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Other frequently used datasets found in our review are listed in decreasing order of use in feature selection literature:
Nutt et al. (2003) (brain cancer), Ramaswamy et al. (2001) (multiple cancers), Beer et al. (2002) (lung cancer), Su et al.
(2002) (multiple tissues), Yeoh et al. (2002) (leukemia), West et al. (2001) (breast cancer), Staunton et al. (2001) (multiple
cancers), Ross et al. (2000) (leukemia), Rosenwald et al. (2002) (lymphoma), Wigle et al. (2002) (lung cancer),
Notterman et al. (2001) (colorectal cancer), Haslinger et al. (2004) (leukemia), Welsh et al. (2001) (prostate cancer),
Stienstra et al. (2010) (hepatitis), Dyrskjøt et al. (2003) (bladder cancer), Hedenfalk et al. (2001) (breast cancer), Chiaretti
et al. (2004) (leukemia), and Chowdary et al. (2006) (breast cancer). These microarray datasets were published between
2000 and 2006 and focused on human cancers. The only exception is Stienstra et al. (2010), a study from 2010 regarding
hepatitis inMus musculus. The complete list of datasets is available in Table S2 in the Supplementary Material 2.

The tendency toward experiments being conducted on older datasets was present for most of the research publica-
tions we reviewed and did not improve considerably between 2010 and 2020 (Figure 4). Although the feature selection

TABLE 2 The most common datasets used in experiments of the reviewed publications in the period of 2010–2020.

Ranking Dataset Year Samples Features Classes Background

Prevalence in
the reviewed
publications (%)

1 Golub et al. (1999) 1999 72 7129 2 Leukemia 40.26

2 Alon et al. (1999) 1999 62 2000 2 Colon cancer 32.13

3 Singh et al. (2002) 2002 136 12,600 2 Prostate cancer 22.98

4 Pomeroy et al. (2002) 2002 90 5920 5 Brain cancer 17.67

5 Khan et al. (2001) 2001 83 2309 4 SRBCT 15.94

6 Shipp et al. (2002) 2002 77 7129 2 DLBCL 14.54

7 Alizadeh et al. (2000) 2000 96 4026 9 Lymphoma 13.60

8 Gordon et al. (2002) 2002 181 12,533 2 Lung cancer 13.52

9 Armstrong et al. (2002) 2002 72 11,225 3 Leukemia 12.58

10 Van't Veer et al. (2002) 2002 97 24,481 2 Breast cancer 11.18

11 Bhattacharjee et al. (2001) 2001 203 12,601 5 Lung cancer 10.39

Abbreviations: DLBCL, diffuse large B-cell lymphoma; SRBCT, small round blue cell tumor.

FIGURE 3 Yearly quantity of reviewed publications using each of the most common datasets from Table 2. The sum of each bar is

potentially larger than the total number of publications for that year because the same study might employ one or more datasets.
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literature seems to keep pace with the release of newer datasets when it comes to RNA-seq datasets, our data indicate
that the vast majority of publications still heavily rely on gene expression data from older microarray experiments. If
we compute a trend line of the average year the datasets were created, the trend is for the age gap issue to persist in the
foreseeable future if no changes in research and editorial practices occur (Figure 4). As previously discussed, Table 1
shows that publications from the IEEE Xplore repository were more likely to have indirect citations, broken links, and
missing references than publications from PubMed. Moreover, Figure 5 shows that publications from the IEEE Xplore
also heavily rely on older datasets than publications from PubMed (the visualization for the WOS and Scopus databases
is in Figure 1 of Supplementary Material 1). One hypothesis is that because the IEEE Xplore publications come from
computer science and engineering backgrounds, their experiments are more focused on the comparison with older

(a) Most recent microarray datasets (b) Least recent microarray datasets

(c) Most recent RNA-seq datasets (d) Least recent RNA-seq datasets

FIGURE 4 Year of publication of publications about feature selection versus the year of datasets creation. The x-axis displays the years

of publication (2010–2020) of all reviewed literature on feature selection for gene expression data. The y-axis indicates the years (1997–2020)
of the creation of the datasets used in experiments of the reviewed publications. Each point corresponds to all publications published in year

x using datasets from year y. The size of the dot is proportional to the number of publications. The solid red line shows the trend year of the

dataset creation. The dashed lines demarcate 10-year periods. (a) y-axis displays the year of creation of the most recent microarray dataset

used in experiments; (b) y-axis displays the year of creation of the least recent microarray dataset used in experiments; (c) y-axis displays the

year of creation of the most recent RNA-seq dataset used in experiments; (d) y-axis displays the year of creation of the least recent RNA-seq

dataset used in experiments. The lines showing the trend of datasets year of creation were computed using the polyfit method (https://

numpy.org/doc/stable/reference/generated/numpy.polyfit.html) from the Numpy library (Harris et al., 2020) with degree equal to one. It fits

a polynomial of degree one that minimizes the squared error in the data of articles publication year versus datasets year.
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methods. For this reason, the datasets used in previous publications end up shared in popular online databases, only
increasing their reach, as discussed in Section 5. Meanwhile, publications from PubMed, mainly from biology-focused
fields, are more concerned with the data being analyzed since it directly impacts the biological importance and accuracy
of the results. Hence, studies from Biological Sciences tend to pay extra attention to data quality, the origin of the
dataset, and the conditions in which it was obtained.

A final issue of the datasets employed in the past and current feature selection research is their subject of
analysis. The vast majority of datasets analyzed in this work come from human cancer. As shown in Figure 6, most
gene expression data employed in feature selection studies come from Homo sapiens, and most of the microarray
datasets are related to some cancer type, which is expected due to the high relevance of the subject and its applica-
bility to Biological and Medical Sciences. Likewise, Figure 2 in Supplementary Material 1 shows the overall distri-
bution of data by species available on GEO, where H. sapiens is the most prevalent. However, it is common for
algorithms developed to analyze gene expression data to be published claiming to be generalists. In this sense, the
authors do not specify preconditions on which datasets to which they can apply their methods. This is a crucial
factor because of the genetics and the expression patterns of H. sapiens and common model organisms, such as

(a) IEEE Xplore –– Microarray (b) PubMed –– Microarray

(c) IEEE Xplore –– RNA-seq (d) PubMed –– RNA-seq

FIGURE 5 Differences between publications archived in the IEEE Xplore and PubMed databases. The chart details are as in Figure 4.

(a) Year of creation of the most recent microarray dataset used in experiments of publications from IEEE Xplore; (b) year of creation of the

most recent microarray dataset used in experiments of publications from PubMed; (c) year of creation of the most recent RNA-seq dataset

used in experiments of publications from IEEE Xplore; (d) year of creation of the most recent RNA-seq dataset used in experiments of

publications from PubMed.
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Mus musculus, Rattus rattus, and Rattus novergicus, although similar, still have differences. Consequentially, there
are variations in the experimental protocols employed in generating datasets for humans and model organisms.
For example, genetic, transcriptomic, and pharmacological manipulation is common to induce tumors in rodents,
which differs from studying spontaneous tumors. Hence, these datasets have different number of features, as well
as numerous probes made specifically for each species. Likewise, biological backgrounds should never be over-
looked since each disease has its own gene expression pattern.

In this case, the algorithms should be tested on data from several distinct organisms and biological backgrounds
to avoid biases in the results. Thus, if an algorithm claims to apply to “microarray data,” for instance, it must be
evaluated with a representative sample of datasets that encompass their diversity, and not only on human or
cancer data (Figure 6).
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FIGURE 6 This Sankey diagram (Otto et al., 2022) was designed considering background information of the datasets employed in the

reviewed publications to show the number of times the following categories appeared: (i) the origin database of each reviewed feature

selection publication (the same publication can use several datasets); (ii) the transcriptomic method used by the datasets (microarray or

RNA-seq); (iii) the species from where the samples were obtained; (iv) the datasets' biological background (i.e., diseases); (v) and the

employed datasets. The number inside the square brackets in each category is the number of times a given information appears in the

reviewed publications. The “other” in each category encompasses information that appeared equal to or less than 10 times in the reviewed

publications. As discussed in the main text, some publications do not detail the employed datasets (i.e., non-defined and missing

information), and those are not accounted for in this diagram.
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4 | THE DANGERS OF LIVING IN THE PAST

As discussed in the previous sections, the most overlooked aspect of feature selection applied to gene expression data
was the age of the employed datasets, where a small group of dated datasets was recurrently used to train and test the
algorithms, a practice that eventually became a liability as the gene expression technology advanced. In addition, errors
or methodological flaws in the data creation or during usage may introduce biases that jeopardize later analyses or
comparisons.

Good examples are the Singh et al. (2002) (prostate cancer) and Gordon et al. (2002) (lung cancer) datasets, which
were both published in 2002 and figure among our top 10 most used datasets (third and eighth places). In the case of
Singh et al. (2002), the distribution of classes in the training set (49%/51%) is different from the test set (26%/74%).
Moreover, this test set has an almost 10-fold difference in microarray intensity from the training set (Bol�on-Canedo
et al., 2014). Such disparities in class distribution are also present in Gordon et al. (2002). This dataset has a 50%/50%
split in training but a 90%/10% split in test. Moreover, a single feature present in the training data is capable of correctly
sorting all samples, which is not biologically feasible as the phenotype is an association of expression patterns, genetic
profiles, and environmental factors; thus, it is not regulated by a single variable (Burga & Lehner, 2012; Grishkevich &
Yanai, 2013; Jakutis & Stainier, 2021; Wong et al., 2021). However, the same feature is not relevant in the test set,
which, in turn, is not linearly separable. Another issue was identified in the data from Bhattacharjee et al. (2001). This
adenocarcinoma dataset from 2001 appears as the 11th most used in our ranking. Using outlier analysis and the supple-
mental information of the original publication, Mramor et al. (2007) identified seven mislabeled samples. These shifts
in data distribution and the presence of outliers are known to impact the quality of feature selectors and classifiers Dorn
et al. (2021).

Other issues are less evident. The most used dataset found in our review was the leukemia microarray experiment
by Golub et al. (1999) from 1999. Containing the expression of 6817 genes and only 38 samples split between two clas-
ses, this dataset can be considered small even when compared to data from the early 2000s. It is also highly heteroge-
neous. It includes samples from peripheral blood rather than just bone marrow, as well as from child patients and from
laboratories that used different sample preparation protocols. More alarmingly, using a method called “neighborhood
analysis,” which is based on the expression levels of individual genes being uniformly high or low, the authors reported
100% accuracy on the class prediction. These results were highly insensitive to the particular selection of genes, with
predictors using different inputs ranging from 10 to 200 genes, all achieving the same 100% accuracy. There are no
doubts about the relevance and pioneering of Golub et al. (1999) results. Nevertheless, it is striking that a small dataset
from 1999 with classes that can be perfectly classified using several assortments of genes is still the most popular bench-
mark for new feature selection studies (40% of the reviewed publications).

Another possible cause for concern in some datasets is that they were prefiltered. The leukemia and the SRBCT
datasets from Alon et al. (1999) and Khan et al. (2001) placed second and fifth in our rank of most used datasets. Both
used microarray experiments with 6567 genes. However, the authors reduced the number of genes in their data to 2000
and 2308, respectively, by filtering for a minimal expression level. In this sense, the versions of these two datasets that
ended up being employed by other researchers were their filtered variations, not the original raw data (Bol�on-Canedo
et al., 2014). Although not a problem, using prefiltered data to evaluate feature selectors can bias the results. By using
data that had several features discarded, the actual dimension of the task is reduced (approximately three times in these
examples), and it becomes impossible to evaluate how the selection algorithms would deal with irrelevant or redundant
features present in the original data. For benchmarking purposes, the authors may be inadvertently mixing the results
of a third-party filter algorithm with their own.

A final problem with these older datasets is the accessibility of the complete list of gene names, accession numbers,
and original expression matrices. For example, Pomeroy et al. (2002) employed a microarray platform with only 6817
probes, which predates the end of the HGP and is three times smaller than the frequently employed Affymetrix U133
GeneChip. The same platform was used by Shipp et al. (2002). Likewise, the links to the original gene expression results
of Pomeroy et al. (2002) and the detailed gene expression analysis protocol of Armstrong et al. (2002) were stored in pri-
vate websites that are no longer functional—a common issue with datasets published before GEO. Finally, another
issue of the employed older datasets (e.g., Van't Veer et al., 2002) is the information of cRNA sequences for microarrays,
which were extracted before the end of the HGP, thus, containing several biases by current standards.

A necessary mindset change must be reached to ensure that newer feature selection studies do not perpetuate inac-
curate and outdated data usage. Older datasets suffer from numerous inadequacies for today's standards. From discon-
tinued platforms and erroneous probes to unknown sources and obscure processing steps, these datasets were
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continuously employed in divergent biological questions, generating doubtful biological data. Likewise, the inherent
heterogeneous nature of cancer, which is rarely accounted for in feature selection or machine learning studies, must
also be evaluated when combining different datasets. Finally, researchers should always know the peculiarities of RNA-
seq and microarray expression matrices.

5 | AVAILABLE DATABASES: A PANDORA'S BOX

Another challenge in using gene expression data in bioinformatics and computational biology is finding trustwor-
thy sources that make them available. Thus, one of the core questions in feature selection applied to gene expres-
sion data is where the researchers find datasets to perform experiments. Bol�on-Canedo et al. (2014) listed what
were considered the nine most famous microarray data repositories in 2014. This list is reproduced in Table 3, with
their current availability status. Of the nine databases, only three remain fully accessible through the URLs listed
in 2014. This situation showcases some of the permanent challenges of choosing the sources of datasets in feature
selection research. Databases with little supervision carry the risk of lack of maintenance or even deletion. This
also hinders the analysis of past publications and comparison with older results because critical data or metadata
may be missing.

Over the years, numerous large machine learning databases became available to discover innovative techniques to
perform learning tasks. Some well-known general platforms and dataset resources are the UCI Machine Learning
repository (https://archive.ics.uci.edu/ml/index.php) (Dua & Graff, 2017), Kaggle (https://www.kaggle.com/datasets),
and OpenML (https://openml.org/). These databases contain hundreds to thousands of datasets from various domains.
However, given that these platforms' main goal is the ease of distribution and access of datasets focusing on machine
learning experiments and benchmarking and do not necessarily focus on specific domains, they may amplify certain
biases by promoting already popular datasets. A search for “gene expression” on Kaggle on July 18, 2022 returned as
first result the “Gene expression dataset (Golub et al.)” (https://www.kaggle.com/datasets/crawford/gene-expression).
This dataset is a copy of the leukemia dataset from Golub et al. (1999), uploaded to Kaggle in 2017 (Figure 3 in Supple-
mentary Material 1). Since then, it has received over 100,000 views and was downloaded over 12,000 times. The dataset
webpage describes it as a good test for classification algorithms without referencing the issues discussed in Sections 3
and 4. Another copy of this dataset appears as one of the first results from OpenML when searching for the keywords
“cancer” or “gene expression” (search conducted on July 18, 2022), with even fewer details (https://openml.org/search?
type=data&id=1104). The UCI Machine Learning repository contains 147 datasets related to life sciences (search con-
ducted on July 19, 2022), from which one is a human cancer RNA-seq gene expression experiment (https://archive.ics.
uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq).

On the other end of the spectrum, some databases contain specific biological data. The NCBI GEO DataSets
(https://www.ncbi.nlm.nih.gov/gds) and the EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) are the de
facto repositories of gene expression experiment results, in which researchers deposit new datasets. The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) is also a well-known database for cancer RNA-seq data, but
TCGA does not allow users to store new data continuously. TCGA was an NCI-funded large-scale project and is distinct
from the other resources. Nevertheless, all those are biology-first databases with organization, jargon, and file formats
that may drive off users only interested in finding datasets to test feature selection and machine learning algorithms.

To bridge the gap between biology and computer science, some databases provide curated gene expression datasets
for use in machine learning research, such as DataMicroArray (https://github.com/ramhiser/datamicroarray), BioLab
(Mramor et al., 2007) (https://file.biolab.si/biolab/supp/bi-cancer/projections/), Princeton University Gene Expression
Project (http://genomics-pubs.princeton.edu/oncology/), inSilicoDB (Taminau et al., 2011) (https://www.bioconductor.
org/packages//2.10/bioc/html/inSilicoDb.html), PSO-EMT datasets (Chen et al., 2020) (https://ckzixf.github.io/dataset.
html), the CuMiDa (Feltes et al., 2019) (https://sbcb.inf.ufrgs.br/cumida) with microarray data, and the BARRA:CuRDa
(Feltes et al., 2021) (https://sbcb.inf.ufrgs.br/barracurda) with curated RNA-seq data. Table 4 compares these databases.
Most of them are created and organized by specific research groups to share data used in their experiments. With a few
exceptions, they are not updated with newer datasets, nor do they discuss the biological relevance or particularities of
the data. However, they are a valuable source for feature selection experiments—the files are freely and openly shared
in ready-to-use formats compatible with the most popular data science libraries and software. Moreover, they come
with the legitimacy of being used in past feature selection or machine learning publications. With the need to provide
enough data to train machine learning models, the few database resources became rapidly famous and broadly used by
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TABLE 4 Comparison between some prominent gene expression databases from which feature selection researchers are likely to

download datasets for experiments.

Databases Curated Source
Quality
controla Up to dateb File formatsc

ARCH4 No Normalized; gene and
transcript level counts

No Yes .h5

BARRA:CuRDa Yes Normalized Yes Yes .csv; .tab; .gct; .cls

BioLab No Author's No No .tab

CuMiDa Yes Normalized Yes Yes .csv; .tab; .gct; .cls; .arff

Datamicroarray No Author's No No .r; .RData

Gene Expression Project No Author's No No .tab; .xls

InSilicodb Yes Varies NS Yes .r

PSO-EMT datasets No Varies No No .mat

Recount3 Yes Gene and transcript level
counts

No Yes .txt; .bw; .mtx; .RData

Refine.bio No Normalized; gene and
transcript level counts

No Yes .sf; .json; .tsv

RNASeq-er No Normalized; gene and
transcript level counts

No Yes .cram; .bw; .bedGraph

Note: The databases are listed in alphabetical order. This table was updated and adapted from Feltes et al. (2019). In this case, since inSilicodb offers datasets
curated by the community, the condition they were built depends on the user.
Abbreviations: BARRA:CuRDa, Benchmarking of ARtificial intelligence Research: Curated RNA-seq Database. CuMiDa, Curated Microarray Database; NS,
not specified.
aReferring to low-quality sample exclusion.
bWe are considering databases that offer datasets from the last 5 years or if most of the datasets are at least from the last 10 years.
cSome databases, such as inSilicodb and datamicroarray, which are R packages, can be exported in different formats due to R flexibility. In this case, we only
list the default entries they offer or their regular file format. inSilicodb does not possess a file format since the information is imported directly into R.

TABLE 3 The most famous public microarray data repositories according to the review by Bol�on-Canedo et al. (2014).

Repositories URL Status

ArrayExpress
European Bioinformatics Institute

http://www.ebi.ac.uk/arrayexpress/ ✔

Cancer Program Data Sets
Broad Institute

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi ✖

Dataset Repository
Bioinformatics Research Group of
Universidad Pablo de Olavide

http://www.upo.es/eps/bigs/datasets.html ✖

Feature Selection Datasets
Arizona State University

http://featureselection.asu.edu/datasets.php ✖

Gene Expression Model Selector
Vanderbilt University

http://www.gems-system.org ✖

Gene Expression Omnibus
National Institutes of Health

http://www.ncbi.nlm.nih.gov/geo/ ✔

Gene Expression Project
Princeton University

http://genomics-pubs.princeton.edu/oncology/ ✔

Kent Ridge Bio-Medical Dataset Repository
Agency for Science, Technology and Research

http://datam.i2r.a-star.edu.sg/datasets/krbd ✖

Stanford Microarray Database
Stanford University

http://smd.stanford.edu/ ✖

Note: The sources and the provided URLs are listed as informed by Bol�on-Canedo et al. (2014), which accessed all repositories in January 2014. In less than a
decade, most URLs are not working anymore (marked with 55). The current status of the URLs was checked on October 14, 2023.
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the machine learning community, often without the proper quality control. As a consequence, some of them end up
perpetuating the sharing of the same datasets listed in Table 2.

Different projects have worked to make available processing raw data from publicly RNA-seq or microarray
datasets, allowing cross-validation and supporting post hoc analysis from multiple organisms. Among these projects are
recount3 (Wilks et al., 2021), ARCH4 (Lachmann et al., 2018), refine.bio (Greene et al., 2023), and RNASeq-er
(Petryszak et al., 2017), which provide the gene counting summarization at gene and transcript levels. However, while
the data available in the repositories listed above have the great advantage of the number of samples, they are not
focused on machine learning approaches, thus, their matrices still need prior steps to ensure sample consistency and
proper prior normalization.

The CuMiDa (Feltes et al., 2019; Grisci et al., 2019), which is strictly focused on cancer research, was created with
the challenges related to analyzing gene expression data with feature selection-based algorithms in mind. CuMiDa
stands out from other known databases by trying to solve the issues mentioned in the previous sections, which are:
(i) the age of the datasets; (ii) proper handling (preprocessing); (iii) dealing with biological reality; and
(iv) benchmarking. Differently from the datasets listed on all other similar databases, the ones in CuMiDa are derived
from the manual curation of all cancer-associated microarray datasets of the entire GEO database. The curation used
rigorous filtering criteria to exclude technical artifacts, low-quality samples, and faulty probes. From more than 30,000
manually curated datasets, only 78 fitted all criteria and filtering, showing how difficult it is to find quality datasets that
would optimally answer a biological question. However, we point out that CuMiDa relies only on datasets with samples
from H. sapiens and from a specific background (human cancers), and, thus, it does not solve the issue of lack of diver-
sity in data by itself. A similar database named BARRA:CuRDa (Feltes et al., 2021), a sister database of CuMiDa,
focused on RNA-seq. BARRA:CuRDa was meant to tackle another overlooked issue: RNA-seq preprocessing for ML. As
described before, RNA-seq matrices are vastly different from microarrays and should be handled in their particular
way. The 17 datasets in BARRA:CuRDa were derived from similar filtering but analyzed using state-of-the-art RNA-seq
preprocessing measures for alignment, trimming, and read quantification and quality.

6 | CONCLUSION

There is a tendency of feature selection works applied to gene expression data to follow a mindset that could be detri-
mental to the field. From 1284 works from the last 11 years, we observed that: (i) 32.3% never cited the original work,
referencing only intermediate articles, showing that there is a tendency to replicate data without proper knowledge of
the background thematic; (ii) 7.7% were broken links, making the datasets they used unreachable; (iii) 5.1% never cited
any source; (v) only 4.6% were generated by the authors. Older datasets that are outdated and, biologically speaking,
should no longer be used to convey biological information are also a constant concern. In this sense, 40.26% of the
reviewed publications from the last 11 years used the data from Golub et al. (1999) that, despite pioneering the field, is
outdated and from a platform discontinued for the last 15–20 years. Likewise, the works of Alon et al. (1999) and Singh
et al. (2002) encompassed 32.13% and 22.98% of the employed datasets. Unfortunately, we noted that using outdated
data are still a trend. Although understandably, multiple Computer Science-oriented works are more focused on the
practical aspects of the data. Most claim that the algorithm can be used to convey biological information, which is inac-
curate and misleading due to the multitude of technical and biological issues previously discussed. More importantly,
these issues are not due to the lack of available new data but to a harmful mindset that keeps being perpetuated.

Hence, creating clear and objective guidelines in the field is paramount to ensure that feature selection algorithms
can be safely applied to biological datasets and generate biologically meaningful data. Some mandatory recommenda-
tions are: (i) always cite the original data source and do not use only indirect citations. (ii) the main characteristics of
the datasets, such as the number of samples, features, classes, and so on, should always be mentioned. If several
datasets are used, list them in an organized way, such as a table; (iii) add working hyperlinks to the data source. If the
data are stored in private databases, check if they are not also available in public repositories. If they are, cite the public
repository as well to assure that it can be reached from multiple sources; (iv) use several datasets with distinct proper-
ties to validate new algorithms; (v) explore the use of datasets from model organisms other than H. sapiens and condi-
tions other than cancer to avoid biases in the evaluation of new algorithms intended for general analyses; (vi) prevent
the use of author's pre-filtered datasets, as they may bias the results of new experiments and algorithms; (vii) avoid
using only older datasets. They can be used for comparison with previous works, but current datasets should always be
employed to validate experiments due to the increasing biological data that is constantly changing; (viii) explore RNA-
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seq data, keeping in mind that microarray expression matrices are different from RNA-seq read count matrices; (ix) when
designing a new database of gene expression for feature selection or machine learning applications, follow the guidelines
proposed by Peters et al. (2018), Wilkinson et al. (2016), Walsh et al. (2021), and Hutchinson et al. (2021); (x) reviewers
and editors should enforce the items above in the publications. Another relevant trend is to use interpretable machine
learning and visualization methods (Artur & Minghim, 2019; Dennig et al., 2019; Grisci et al., 2021; May et al., 2011) to
improve the understanding and replicability of the results of feature selection experiments with high-dimensional data.
Even though this work focused on feature selection, given the scope of the reviewed publications, many of these recom-
mendations also apply to machine learning and bioinformatics research applied to gene expression data.
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